Skip to content

Latest commit

 

History

History
97 lines (70 loc) · 3.7 KB

README.zh-CN.md

File metadata and controls

97 lines (70 loc) · 3.7 KB
语言: 🇨🇳 🇺🇸

«KnowledgeReview»复现了论文Distilling Knowledge via Knowledge Review

arch_s top1 top5 arch_t top1 top5 dataset lambda top1 top5
MobileNetv2 80.620 95.820 ResNet50 83.540 96.820 CIFAR100 7.0 83.370 96.810
MobileNetv2 80.620 95.820 ResNet152 85.490 97.590 CIFAR100 8.0 84.530 97.470
MobileNetv2 80.620 95.820 ResNeXt_32x8d 85.720 97.650 CIFAR100 6.0 84.520 97.470
ResNet18 80.540 96.040 ResNet50 83.540 96.820 CIFAR100 10.0 83.130 96.350
ResNet50 83.540 96.820 ResNet152 85.490 97.590 CIFAR100 6.0 86.240 97.610
ResNet50 83.540 96.820 ResNeXt_32x8d 85.720 97.650 CIFAR100 6.0 86.220 97.490

更多内容参见docs

内容列表

背景

和之前的知识迁移算法不同,RFD使用了跨阶段的教师特征来训练学生特征。同时,它还设计了一个新的残差学习框架用于简化学生特征转换操作,以及设计了ABF(基于融合注意力)模块和HCL(分层内容损失)函数来辅助特征蒸馏训练。

当前实现基于 ZJCV/overhaul dvlab-research/ReviewKD

安装

$ pip install -r requirements.txt

用法

  • 训练
$ CUDA_VISIBLE_DEVICES=0 python tools/train.py -cfg=configs/rfd/resnet/rfd_6_0_r152_pret_r50_c100_224_e100_sgd_mslr.yaml
  • 测试
$ CUDA_VISIBLE_DEVICES=0 python tools/test.py -cfg=configs/rfd/resnet/rfd_6_0_r152_pret_r50_c100_224_e100_sgd_mslr.yaml

主要维护人员

  • zhujian - Initial work - zjykzj

致谢

@misc{chen2021distilling,
      title={Distilling Knowledge via Knowledge Review}, 
      author={Pengguang Chen and Shu Liu and Hengshuang Zhao and Jiaya Jia},
      year={2021},
      eprint={2104.09044},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

参与贡献方式

欢迎任何人的参与!打开issue或提交合并请求。

注意:

许可证

Apache License 2.0 © 2021 zjykzj