Skip to content
This repository has been archived by the owner on Aug 17, 2024. It is now read-only.

Latest commit

 

History

History
115 lines (82 loc) · 3.14 KB

README.md

File metadata and controls

115 lines (82 loc) · 3.14 KB
Language: 🇺🇸 🇨🇳

«RotNet» realizes image rotation correction based on deep learning

Table of Contents

Background

Looking for information on the Internet, we found that the image rotation angle can be detected by deep learning algorithm. Refer to

The corresponding implementation can't meet the current performance requirements, so I implement one myself

Installation

$ pip install -r requirements.txt

Usage

How to use

  • train
$ export PYTHONPATH=<root path>
$ CUDA_VISIBLE_DEVICES=0 python tools/train.py -cfg=configs/xxx.yaml
  • test
$ export PYTHONPATH=<root path>
$ CUDA_VISIBLE_DEVICES=0 python demo/demo.py -cfg=demo/xxx.yaml

How to add dataset

Suppose your dataset is in the following format

root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png

root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png

modify config_file like this

DATASET:
  NAME: 'GeneralDataset'
  TRAIN_ROOT: /path/to/train_root
  TEST_ROOT: /path/to/test_root
  TOP_K: (1, 5)

Maintainers

  • zhujian - Initial work - zjykzj

Thanks

Contributing

Anyone's participation is welcome! Open an issue or submit PRs.

Small note:

License

Apache License 2.0 © 2020 zjykzj