forked from chenxia-han/simpledet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
48 lines (44 loc) · 2.17 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import pprint
import mxnet as mx
from core.detection_module import DetModule
from utils.load_model import load_checkpoint
def create_teacher_module(pTeacherModel, worker_data_shape, input_batch_size, ctx, rank, logger):
t_prefix = pTeacherModel.prefix
t_epoch = pTeacherModel.epoch
t_endpoint = pTeacherModel.endpoint
t_data_name = pTeacherModel.data_name
t_label_name = pTeacherModel.label_name
if rank == 0:
logger.info('Building teacher module with endpoint: {}'.format(t_endpoint))
t_sym = pTeacherModel.prefix + '-symbol.json'
t_sym = mx.sym.load(t_sym)
t_sym = mx.sym.Group([t_sym.get_internals()[out] for out in t_endpoint])
t_worker_data_shape = {key: worker_data_shape[key] for key in t_data_name}
_, t_out_shape, _ = t_sym.infer_shape(**t_worker_data_shape)
t_terminal_out_shape_dict = zip(t_sym.list_outputs(), t_out_shape)
t_data_shape = []
for idx, data_name in enumerate(t_data_name):
data_shape = t_worker_data_shape[data_name]
data_shape = (input_batch_size,) + data_shape[1:]
t_data_shape.append((data_name, data_shape))
t_label_shape = []
for idx, label_name in enumerate(t_label_name):
label_shape = t_out_shape[idx]
label_shape = (input_batch_size,) + label_shape[1:]
t_label_shape.append((label_name, label_shape))
if rank == 0:
logger.info('Teacher data_name: {}'.format(t_data_name))
logger.info('Teacher data_shape: {}'.format(t_data_shape))
logger.info('Teacher label_name: {}'.format(t_label_name))
logger.info('Teacher label_shape: {}'.format(t_label_shape))
if rank == 0:
logger.info('Teacher terminal output shape')
logger.info(pprint.pformat([i for i in t_terminal_out_shape_dict]))
t_arg_params, t_aux_params = load_checkpoint(t_prefix, t_epoch)
t_mod = DetModule(t_sym, data_names=t_data_name, label_names=None,
logger=logger, context=ctx)
t_mod.bind(data_shapes=t_data_shape, for_training=False, grad_req='null')
t_mod.set_params(t_arg_params, t_aux_params)
if rank == 0:
logger.info('Finish teacher module build')
return t_mod, t_label_name, t_label_shape