forked from chenxia-han/simpledet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuilder_v2.py
184 lines (149 loc) · 6.83 KB
/
builder_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import mxnet as mx
import mxnext as X
from mxnext import conv, relu, add
from mxnext.backbone import resnet_v1_helper, resnet_v1b_helper
from symbol.builder import Backbone
def trident_resnet_v1_unit(input, name, id, filter, stride, dilate, proj, **kwargs):
p = kwargs["params"]
share_bn = p.branch_bn_shared
share_conv = p.branch_conv_shared
norm = p.normalizer
######################### prepare names #########################
if id is not None:
conv_postfix = ("_shared%s" if share_conv else "_branch%s") % id
bn_postfix = ("_shared%s" if share_bn else "_branch%s") % id
other_postfix = "_branch%s" % id
else:
conv_postfix = ""
bn_postfix = ""
other_postfix = ""
######################### prepare parameters #########################
conv_params = lambda x: dict(
weight=X.shared_var(name + "_%s_weight" % x) if share_conv else None,
name=name + "_%s" % x + conv_postfix
)
bn_params = lambda x: dict(
gamma=X.shared_var(name + "_%s_gamma" % x) if share_bn else None,
beta=X.shared_var(name + "_%s_beta" % x) if share_bn else None,
moving_mean=X.shared_var(name + "_%s_moving_mean" % x) if share_bn else None,
moving_var=X.shared_var(name + "_%s_moving_var" % x) if share_bn else None,
name=name + "_%s" % x + bn_postfix
)
######################### construct graph #########################
conv1 = conv(input, filter=filter // 4, stride=stride, **conv_params("conv1"))
bn1 = norm(conv1, **bn_params("bn1"))
relu1 = relu(bn1, name=name + other_postfix)
conv2 = conv(relu1, filter=filter // 4, kernel=3, dilate=dilate, **conv_params("conv2"))
bn2 = norm(conv2, **bn_params("bn2"))
relu2 = relu(bn2, name=name + other_postfix)
conv3 = conv(relu2, filter=filter, **conv_params("conv3"))
bn3 = norm(conv3, **bn_params("bn3"))
if proj:
shortcut = conv(input, filter=filter, stride=stride, **conv_params("sc"))
shortcut = norm(shortcut, **bn_params("sc_bn"))
else:
shortcut = input
eltwise = add(bn3, shortcut, name=name + "_plus" + other_postfix)
return relu(eltwise, name=name + "_relu" + other_postfix)
def trident_resnet_v1b_unit(input, name, id, filter, stride, dilate, proj, **kwargs):
"""
Compared with v1, v1b moves stride=2 to the 3x3 conv instead of the 1x1 conv and use std in pre-processing
This is also known as the facebook re-implementation of ResNet(a.k.a. the torch ResNet)
"""
p = kwargs["params"]
share_bn = p.branch_bn_shared
share_conv = p.branch_conv_shared
norm = p.normalizer
######################### prepare names #########################
if id is not None:
conv_postfix = ("_shared%s" if share_conv else "_branch%s") % id
bn_postfix = ("_shared%s" if share_bn else "_branch%s") % id
other_postfix = "_branch%s" % id
else:
conv_postfix = ""
bn_postfix = ""
other_postfix = ""
######################### prepare parameters #########################
conv_params = lambda x: dict(
weight=X.shared_var(name + "_%s_weight" % x) if share_conv else None,
name=name + "_%s" % x + conv_postfix
)
def bn_params(x):
ret = dict(
gamma=X.shared_var(name + "_%s_gamma" % x) if share_bn else None,
beta=X.shared_var(name + "_%s_beta" % x) if share_bn else None,
moving_mean=X.shared_var(name + "_%s_moving_mean" % x) if share_bn else None,
moving_var=X.shared_var(name + "_%s_moving_var" % x) if share_bn else None,
name=name + "_%s" % x + bn_postfix
)
if norm.__name__ == "gn":
del ret["moving_mean"], ret["moving_var"]
return ret
######################### construct graph #########################
conv1 = conv(input, filter=filter // 4, **conv_params("conv1"))
bn1 = norm(conv1, **bn_params("bn1"))
relu1 = relu(bn1, name=name + other_postfix)
conv2 = conv(relu1, filter=filter // 4, kernel=3, stride=stride, dilate=dilate, **conv_params("conv2"))
bn2 = norm(conv2, **bn_params("bn2"))
relu2 = relu(bn2, name=name + other_postfix)
conv3 = conv(relu2, filter=filter, **conv_params("conv3"))
bn3 = norm(conv3, **bn_params("bn3"))
if proj:
shortcut = conv(input, filter=filter, stride=stride, **conv_params("sc"))
shortcut = norm(shortcut, **bn_params("sc_bn"))
else:
shortcut = input
eltwise = add(bn3, shortcut, name=name + "_plus" + other_postfix)
return relu(eltwise, name=name + "_relu" + other_postfix)
def get_trident_resnet_backbone(unit, helper):
class TridentResNetC4(Backbone):
def __init__(self, pBackbone):
super().__init__(pBackbone)
p = self.p
num_c2, num_c3, num_c4, _ = helper.depth_config[p.depth]
num_tri = p.num_c4_block or (num_c4 - 1)
################### construct symbolic graph ###################
data = X.var("data")
if p.fp16:
data = data.astype("float16")
c1 = helper.resnet_c1(data, p.normalizer)
c2 = helper.resnet_c2(c1, num_c2, 1, 1, p.normalizer)
c3 = helper.resnet_c3(c2, num_c3, 2, 1, p.normalizer)
# construct leading res blocks
data = c3
for i in range(1, num_c4 - num_tri + 1):
data = unit(
input=data,
name="stage3_unit%s" % i,
id=None,
filter=1024,
stride=2 if i == 1 else 1,
proj=True if i == 1 else False,
dilate=1,
params=p)
# construct parallel branches
c4s = []
for dil, id in zip(p.branch_dilates, p.branch_ids):
c4 = data # reset c4 to the output of last stage
for i in range(num_c4 - num_tri + 1, num_c4 + 1):
c4 = trident_resnet_v1b_unit(
input=c4,
name="stage3_unit%s" % i,
id=id,
filter=1024,
stride=2 if i == 1 else 1,
proj=True if i == 1 else False,
dilate=dil,
params=p)
c4s.append(c4)
# stack branch outputs on the batch dimension
c4 = mx.sym.stack(*c4s, axis=1)
c4 = mx.sym.reshape(c4, shape=(-3, -2))
self.symbol = c4
def get_rpn_feature(self):
return self.symbol
def get_rcnn_feature(self):
return self.symbol
return TridentResNetC4
TridentResNetV1C4 = get_trident_resnet_backbone(trident_resnet_v1_unit, resnet_v1_helper)
TridentResNetV1bC4 = get_trident_resnet_backbone(trident_resnet_v1b_unit, resnet_v1b_helper)