forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Generator.h
191 lines (152 loc) · 6.26 KB
/
Generator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#pragma once
#include <cstdint>
#include <deque>
#include <mutex>
#include <utility>
#include <c10/util/Exception.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/core/Device.h>
#include <c10/core/DispatchKeySet.h>
// For the record I don't think this is a correct pimpl idiom.
// Including Impl header in interface header defeats the purpose
// because you can't change Impl private members without forcing
// everything that included the interface to rebuild.
// Impl should be forward-declared in the interface header instead.
#include <c10/core/GeneratorImpl.h>
/**
* Note [Generator]
* ~~~~~~~~~~~~~~~~
* A Pseudo Random Number Generator (PRNG) is an engine that uses an algorithm to
* generate a seemingly random sequence of numbers, that may be later be used in creating
* a random distribution. Such an engine almost always maintains a state and requires a
* seed to start off the creation of random numbers. Often times, users have
* found it beneficial to be able to explicitly create, retain, and destroy
* PRNG states and also be able to have control over the seed value.
*
* A Generator in ATen gives users the ability to read, write and modify a PRNG engine.
* For instance, it does so by letting users seed a PRNG engine, fork the state of the
* engine, etc.
*
* By default, there is one generator per device, and a device's generator is
* lazily created. A user can use the torch.Generator() api to create their own generator.
*/
/**
* Note [Acquire lock when using random generators]
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Generator and its derived classes are NOT thread-safe. Please note that most of the
* places where we have inserted locking for generators are historically based, and we
* haven't actually checked that everything is truly thread safe (and it probably isn't).
* Please use the public mutex_ when using any methods from these classes, except for the
* read-only methods. You can learn about the usage by looking into the unittests
* (aten/src/ATen/cpu_generator_test.cpp) and other places where we have used lock_guard.
*
* TODO: Look into changing the threading semantics of Generators in ATen (e.g., making
* them non-thread safe and instead making the generator state splittable, to accommodate
* forks into other threads).
*/
namespace at {
class Tensor;
struct TORCH_API Generator {
Generator() = default;
explicit Generator(c10::intrusive_ptr<c10::GeneratorImpl> gen_impl)
: impl_(std::move(gen_impl)) {
if (impl_.get() == nullptr) {
throw std::runtime_error("GeneratorImpl with nullptr is not supported");
}
}
bool operator==(const Generator& rhs) const {
return this->impl_ == rhs.impl_;
}
bool operator!=(const Generator& rhs) const {
return !((*this) == rhs);
}
bool defined() const {
return static_cast<bool>(impl_);
}
c10::GeneratorImpl* unsafeGetGeneratorImpl() const {
return impl_.get();
}
c10::GeneratorImpl* unsafeReleaseGeneratorImpl() {
return impl_.release();
}
const c10::intrusive_ptr<c10::GeneratorImpl>& getIntrusivePtr() const {
return impl_;
}
void set_current_seed(uint64_t seed) { impl_->set_current_seed(seed); }
// Sets the offset of Generator state to the desired offset. This is currently
// supported for only Philox based Generators, i.e., CUDA and MPS.
void set_offset(uint64_t offset) { impl_->set_offset(offset); }
// Returns the offset of Generator state. This is currently supported for only
// Philox based Generators, i.e., CUDA and MPS.
uint64_t get_offset() const { return impl_->get_offset(); }
uint64_t current_seed() const { return impl_->current_seed(); }
uint64_t seed() { return impl_->seed(); }
// Implementation not inlined to prevent cycle reference between
// `ATen/core/Generator.h` and `ATen/core/Tensor.h`
void set_state(const at::Tensor& new_state);
at::Tensor get_state() const;
void graphsafe_set_state(const Generator& new_state);
Generator graphsafe_get_state() const;
std::mutex& mutex() {
return impl_->mutex_;
}
DispatchKeySet key_set() const {
return impl_->key_set();
}
Device device() const { return impl_->device(); }
inline void set_pyobj(PyObject* pyobj) const noexcept {
impl_->set_pyobj(pyobj);
}
inline PyObject* pyobj() const noexcept {
return impl_->pyobj();
}
template<typename T>
T* get() const { return static_cast<T*>(impl_.get()); }
Generator clone() const {
return Generator(impl_->clone());
}
private:
c10::intrusive_ptr<c10::GeneratorImpl> impl_;
};
template<class Impl, class... Args>
Generator make_generator(Args&&... args) {
return Generator(c10::make_intrusive<Impl>(std::forward<Args>(args)...));
}
/**
* Utility function to static cast input Generator* to
* the backend generator type (CPU/CUDAGeneratorImpl etc.)
*/
template <typename T>
inline T * check_generator(std::optional<Generator> gen) {
TORCH_CHECK(gen.has_value(), "Expected Generator but received nullopt");
TORCH_CHECK(gen->defined(), "Generator with undefined implementation is not allowed");
TORCH_CHECK(T::device_type() == gen->device().type(), "Expected a '", T::device_type(), "' device type for generator but found '", gen->device().type(), "'");
return gen->get<T>();
}
/**
* Utility function used in tensor implementations, which
* supplies the default generator to tensors, if an input generator
* is not supplied. The input Generator* is also static casted to
* the backend generator type (CPU/CUDAGeneratorImpl etc.)
*/
template <typename T>
inline T* get_generator_or_default(const std::optional<Generator>& gen, const Generator& default_gen) {
return gen.has_value() && gen->defined() ? check_generator<T>(gen) : check_generator<T>(default_gen);
}
namespace detail {
/**
* Helper function for checking the validity of new random generator
* state. Right now following conditions are checked:
*
* - The new state tensor must be a torch.ByteTensor
* - Data of the new state tensor must be contiguous
*/
inline void check_rng_state(const c10::TensorImpl& new_state) {
TORCH_CHECK_TYPE(
new_state.layout() == kStrided && new_state.device().type() == kCPU && new_state.dtype() == kByte,
"RNG state must be a torch.ByteTensor"
);
TORCH_CHECK(new_state.is_contiguous(), "RNG state must be contiguous");
}
} // namespace detail
} // namespace at