-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_prep.py
135 lines (114 loc) · 5.42 KB
/
data_prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# comprehensive script for training model data prep
# re-labels, sorts, and filters songs samples
# cerates new directory "audio_samples" and deltes FMA/GTZAN directories
from notebook_functions import *
from pydub import AudioSegment
from song_lists import *
from pathlib import Path
from config import *
import eyed3, os, shutil
import pandas as pd
print("Importing and prepping data for processing...")
# set string paths to directory locations for extracted data
#data_dir = # path to data driectory, eg: "C:\\Users\\user\\Desktop\\data"
#fma_exraction = # directory name of FMA extraction location eg: "fma_medium"
#fma_met_extract = # directory name of FMA metadata extraction location eg: "fma_metadata"
#gtzan_extraction = # directory name of FMA extraction location eg: "GTZAN"
fma_dir = os.path.join(data_dir, fma_extraction)
gtzan_dir = os.path.join(data_dir, gtzan_extraction)
fma_metadata = os.path.join(data_dir, fma_met_extract)
# if you want the unused songs deleted
delete_unused = False
# ignore 'uncommon genre' warning
eyed3.log.setLevel("ERROR")
# load metadata
os.chdir(fma_metadata)
genres_df = pd.read_csv('genres.csv')
tracks_df = pd.read_csv('raw_tracks.csv')
# prep for re-labeling
tracks_df = tracks_df[["track_id", "track_genres"]]
tracks_df = tracks_df[tracks_df['track_genres'].notna()]
tracks_df['track_genres'] = tracks_df['track_genres'].apply(eval)
tracks_df['genre_ids'] = tracks_df['track_genres'].apply(get_genre_id)
tracks_df['genre_ids'] = tracks_df['genre_ids'].apply(id_to_int)
tracks_df['track_id'] = tracks_df['track_id'].apply(id_to_int)
# lookups for re-labeling and re-organizating loop
fma_paths, _ = make_file_list(fma_dir)
gtzan_paths, gtzan_songs = make_file_list(gtzan_dir)
genre_lookup = genres_df.set_index('genre_id').to_dict()['title']
id_lookup = genres_df.set_index('title').to_dict()['genre_id']
parent_lookup = genres_df.set_index('genre_id').to_dict()['top_level']
track_genre_lookup = tracks_df.set_index('track_id').to_dict()['genre_ids']
# genres for classification
target_genres = ["Reggae", "Rock", "Punk", "Metal", "Psych-Rock", "Post-Rock", \
"Indie-Rock", "Electronic", "Ambient Electronic", "Techno", \
"Chiptune", "Trip-Hop", "Jazz", "Classical", "Country", \
"Pop", "Folk", "Hip-Hop"]
# so these are not re-labeled as their top-level genre
preserved_genres = ["Psych-Rock", "Post-Rock", "Ambient Electronic", "Techno", \
"Indie-Rock", "Trip-Hop", "Punk", "House"]
# create directories to move songs into
sample_dir_name = "audio_samples"
sample_dir = os.path.join(data_dir, sample_dir_name)
Path(sample_dir).mkdir(mode=0o777, parents=False, exist_ok=True)
for genre in target_genres:
genre_dir = os.path.join(sample_dir, genre)
Path(genre_dir).mkdir(mode=0o777, parents=False, exist_ok=True)
def genre_fix(song_genre, filename):
'''adjusts current genres to be of only target genres'''
if "Reggae" in song_genre: song_genre = "Reggae"
elif "Chip" in song_genre or filename in chiptune_relabel: song_genre = "Chiptune"
elif "Metal" in song_genre: song_genre = "Metal"
elif "House" in song_genre: song_genre = "Techno"
elif filename in country_relabel: song_genre = "Country"
elif song_genre not in preserved_genres:
song_genre = genre_lookup[parent_lookup[id_lookup[song_genre]]]
return song_genre
print("Starting to re-label and move songs...")
# re-label and move FMA samples
for i in range(len(fma_paths)):
os.chmod(fma_paths[i], 0o777)
if i == len(fma_paths)//2:
print("Halfway done!")
filename = fma_paths[i][-10:-4]
song_genre = genre_lookup[track_genre_lookup[int(filename)]]
if filename not in fma_skips and song_genre not in fma_skips:
audiofile = eyed3.load(fma_paths[i])
song_genre = genre_fix(song_genre, filename)
audiofile.tag.genre = song_genre
audiofile.tag.save()
########## TODO: finish screening song samples for Rock, Electric, and Punk
########## then remove this portion of the script
skip_song = False
if song_genre == 'Electronic' and int(filename) > 58343:
skip_song = True
elif song_genre == 'Rock' and filename not in safe_rock:
skip_song = True
elif song_genre == 'Punk' and int(filename) >= 93983:
skip_song = True
if not skip_song:
########## end of portion to remove
new_path = os.path.join(data_dir, sample_dir_name, song_genre, fma_paths[i][-10:])
os.replace(fma_paths[i], new_path)
print("Beginning GTZAN wav to mp3 conversions and moving...")
# convert to mp3, move, and then re-label GTZAN songs
for i in range(len(gtzan_paths)):
if i == len(gtzan_paths)//2:
print("Halfway done!")
filename = gtzan_songs[i]
for genre in gtzan_genres:
if genre in filename and filename not in gtzan_skips:
genre = genre.capitalize()
new_file_name = filename[:-4] + ".mp3"
new_file = os.path.join(data_dir, sample_dir_name, genre, new_file_name)
AudioSegment.from_wav(gtzan_paths[i]).export(new_file, format="mp3")
audiofile = eyed3.load(new_file)
audiofile.tag.genre = genre
audiofile.tag.save()
if delete_unused:
print("Deleting leftover files...")
shutil.rmtree(fma_dir)
shutil.rmtree(gtzan_dir)
else:
print("Leftover files not deleted.")
print("Done moving, re-labeling, and converting files.")