We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19)) paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
f, axarr = plt.subplots(1, len(multiplier)) f.set_size_inches((20, 5))
f2, axarr2 = plt.subplots(1, len(multiplier)) f2.set_size_inches((20, 5))
f3, axarr3 = plt.subplots(2, len(multiplier)) f3.set_size_inches((20, 10))
for m in range(len(multiplier)): scale = multiplier[m] imageToTest = cv.resize(oriImg, (0,0), fx=scale, fy=scale, interpolation=cv.INTER_CUBIC) imageToTest_padded, pad = util.padRightDownCorner(imageToTest, model['stride'], model['padValue']) print(imageToTest_padded.shape)
axarr[m].imshow(imageToTest_padded[:,:,[2,1,0]]) axarr[m].set_title('Input image: scale %d' % m) net.blobs['data'].reshape(*(1, 3, imageToTest_padded.shape[0], imageToTest_padded.shape[1])) #net.forward() # dry run net.blobs['data'].data[...] = np.transpose(np.float32(imageToTest_padded[:,:,:,np.newaxis]), (3,2,0,1))/256 - 0.5; start_time = time.time() output_blobs = net.forward() print('At scale %d, The CNN took %.2f ms.' % (m, 1000 * (time.time() - start_time))) # extract outputs, resize, and remove padding heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1,2,0)) # output 1 is heatmaps heatmap = cv.resize(heatmap, (0,0), fx=model['stride'], fy=model['stride'], interpolation=cv.INTER_CUBIC) heatmap = heatmap[:imageToTest_padded.shape[0]-pad[2], :imageToTest_padded.shape[1]-pad[3], :] heatmap = cv.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv.INTER_CUBIC) paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1,2,0)) # output 0 is PAFs paf = cv.resize(paf, (0,0), fx=model['stride'], fy=model['stride'], interpolation=cv.INTER_CUBIC) paf = paf[:imageToTest_padded.shape[0]-pad[2], :imageToTest_padded.shape[1]-pad[3], :] paf = cv.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv.INTER_CUBIC) # visualization axarr2[m].imshow(oriImg[:,:,[2,1,0]]) ax2 = axarr2[m].imshow(heatmap[:,:,3], alpha=.5) # right wrist axarr2[m].set_title('Heatmaps (Rwri): scale %d' % m) axarr3.flat[m].imshow(oriImg[:,:,[2,1,0]]) ax3x = axarr3.flat[m].imshow(paf[:,:,16], alpha=.5) # right elbow axarr3.flat[m].set_title('PAFs (x comp. of Rwri to Relb): scale %d' % m) axarr3.flat[len(multiplier) + m].imshow(oriImg[:,:,[2,1,0]]) ax3y = axarr3.flat[len(multiplier) + m].imshow(paf[:,:,17], alpha=.5) # right wrist axarr3.flat[len(multiplier) + m].set_title('PAFs (y comp. of Relb to Rwri): scale %d' % m) heatmap_avg = heatmap_avg + heatmap / len(multiplier) paf_avg = paf_avg + paf / len(multiplier)
f2.subplots_adjust(right=0.93) cbar_ax = f2.add_axes([0.95, 0.15, 0.01, 0.7]) _ = f2.colorbar(ax2, cax=cbar_ax)
After excuting the code,
TypeError Traceback (most recent call last) in () 28 29 # extract outputs, resize, and remove padding ---> 30 heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1,2,0)) # output 1 is heatmaps 31 heatmap = cv.resize(heatmap, (0,0), fx=model['stride'], fy=model['stride'], interpolation=cv.INTER_CUBIC) 32 heatmap = heatmap[:imageToTest_padded.shape[0]-pad[2], :imageToTest_padded.shape[1]-pad[3], :]
TypeError: 'dict_keys' object does not support indexing
The text was updated successfully, but these errors were encountered:
Hello, I have the same problem. I managed to get a bit further by doing tmp = output_blobs.keys() print(tmp)
heatmap = np.transpose(np.squeeze(net.blobs['Mconv7_stage_6_L1'].data), (1,2,0)) # output 1
But afterwards heatmap and heatmap_avg pft and pft_avg Have dimension problems problems
Sorry, something went wrong.
how you solve the dimension problem after change ouput_blobs.keys()?
Are you running Python3? Then use list(dict.keys()). I think Python2 returned dict.keys() as a list, not Python3.
list(dict.keys())
No branches or pull requests
I tired demo.ipynb at google colab. After installing the requirements I started to run the code. There arise an issue in the follwing code,
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
first figure shows padded images
f, axarr = plt.subplots(1, len(multiplier))
f.set_size_inches((20, 5))
second figure shows heatmaps
f2, axarr2 = plt.subplots(1, len(multiplier))
f2.set_size_inches((20, 5))
third figure shows PAFs
f3, axarr3 = plt.subplots(2, len(multiplier))
f3.set_size_inches((20, 10))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv.resize(oriImg, (0,0), fx=scale, fy=scale, interpolation=cv.INTER_CUBIC)
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, model['stride'], model['padValue'])
print(imageToTest_padded.shape)
f2.subplots_adjust(right=0.93)
cbar_ax = f2.add_axes([0.95, 0.15, 0.01, 0.7])
_ = f2.colorbar(ax2, cax=cbar_ax)
f3.subplots_adjust(right=0.93)
cbar_axx = f3.add_axes([0.95, 0.57, 0.01, 0.3])
_ = f3.colorbar(ax3x, cax=cbar_axx)
cbar_axy = f3.add_axes([0.95, 0.15, 0.01, 0.3])
_ = f3.colorbar(ax3y, cax=cbar_axy)
After excuting the code,
(184, 200, 3)
At scale 0, The CNN took 105.94 ms.
TypeError Traceback (most recent call last)
in ()
28
29 # extract outputs, resize, and remove padding
---> 30 heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1,2,0)) # output 1 is heatmaps
31 heatmap = cv.resize(heatmap, (0,0), fx=model['stride'], fy=model['stride'], interpolation=cv.INTER_CUBIC)
32 heatmap = heatmap[:imageToTest_padded.shape[0]-pad[2], :imageToTest_padded.shape[1]-pad[3], :]
TypeError: 'dict_keys' object does not support indexing
The text was updated successfully, but these errors were encountered: