-
Notifications
You must be signed in to change notification settings - Fork 101
/
faxi_slave.v
1321 lines (1216 loc) · 36.1 KB
/
faxi_slave.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
////////////////////////////////////////////////////////////////////////////////
//
// Filename: faxi_slave.v (Formal properties of an AXI4 (full) slave)
// {{{
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: This file contains a subset of the formal properties which I've
// used to formally verify that a core truly follows the full
// AXI4 specification.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2017-2024, Gisselquist Technology, LLC
// {{{
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
// }}}
module faxi_slave #(
// {{{
parameter C_AXI_ID_WIDTH = 3, // The AXI id width used for R&W
// This is an int between 1-16
parameter C_AXI_DATA_WIDTH = 128,// Width of the AXI R&W data
parameter C_AXI_ADDR_WIDTH = 28, // AXI Address width (log wordsize)
parameter [7:0] OPT_MAXBURST = 8'hff,// Maximum burst length, minus 1
parameter [0:0] OPT_EXCLUSIVE = 1,// Exclusive access allowed
parameter [0:0] OPT_NARROW_BURST = 1,// Narrow bursts allowed by default
parameter [0:0] OPT_ASYNC_RESET = 0,
// F_OPT_ASSUME_RESET, if set, will cause the design to *assume* the
// existence of a correct reset, rather than asserting it. It is
// appropriate anytime the reset logic is outside of the circuit being
// examined
parameter [0:0] F_OPT_ASSUME_RESET = 1'b1,
parameter [0:0] F_OPT_NO_RESET = 1'b1,
// F_LGDEPTH is the number of bits necessary to count the maximum
// number of items in flight.
parameter F_LGDEPTH = 10,
parameter [(F_LGDEPTH-1):0] F_AXI_MAXSTALL = 3,
parameter [(F_LGDEPTH-1):0] F_AXI_MAXRSTALL= 3,
parameter [(F_LGDEPTH-1):0] F_AXI_MAXDELAY = 3,
localparam F_OPT_BURSTS = (OPT_MAXBURST != 0),
//
localparam IW = C_AXI_ID_WIDTH,
localparam DW = C_AXI_DATA_WIDTH,
localparam AW = C_AXI_ADDR_WIDTH
// }}}
) (
// {{{
input wire i_clk, // System clock
input wire i_axi_reset_n,
// AW* : AXI write address channel signals
// {{{
input wire i_axi_awvalid, // Write address valid
input wire i_axi_awready,//Slave is ready to accept
input wire [IW-1:0] i_axi_awid, // Write ID
input wire [AW-1:0] i_axi_awaddr, // Write address
input wire [7:0] i_axi_awlen, // Write Burst Length
input wire [2:0] i_axi_awsize, // Write Burst size
input wire [1:0] i_axi_awburst, // Write Burst type
input wire [0:0] i_axi_awlock, // Write lock type
input wire [3:0] i_axi_awcache, // Write Cache type
input wire [2:0] i_axi_awprot, // Write Protection type
input wire [3:0] i_axi_awqos, // Write Quality of Svc
// }}}
// W* : AXI write data channel signals
// {{{
input wire i_axi_wvalid, // Write valid
input wire i_axi_wready, // Write data ready
input wire [DW-1:0] i_axi_wdata, // Write data
input wire [DW/8-1:0] i_axi_wstrb, // Write strobes
input wire i_axi_wlast, // Last write transaction
// }}}
// B* : AXI write response channel signals
// {{{
input wire i_axi_bvalid, // Write reponse valid
input wire i_axi_bready, // Response ready
input wire [IW-1:0] i_axi_bid, // Response ID
input wire [1:0] i_axi_bresp, // Write response
// }}}
// AR* : AXI read address channel signals
// {{{
input wire i_axi_arvalid, // Read address valid
input wire i_axi_arready, // Read address ready
input wire [IW-1:0] i_axi_arid, // Read ID
input wire [AW-1:0] i_axi_araddr, // Read address
input wire [7:0] i_axi_arlen, // Read Burst Length
input wire [2:0] i_axi_arsize, // Read Burst size
input wire [1:0] i_axi_arburst, // Read Burst type
input wire [0:0] i_axi_arlock, // Read lock type
input wire [3:0] i_axi_arcache, // Read Cache type
input wire [2:0] i_axi_arprot, // Read Protection type
input wire [3:0] i_axi_arqos, // Read Protection type
// }}}
// R* : AXI read data channel signals
// {{{
input wire [IW-1:0] i_axi_rid, // Response ID
input wire [1:0] i_axi_rresp, // Read response
input wire i_axi_rvalid, // Read reponse valid
input wire [DW-1:0] i_axi_rdata, // Read data
input wire i_axi_rlast, // Read last
input wire i_axi_rready, // Read Response ready
// }}}
// Induction information
// {{{
output reg [F_LGDEPTH-1:0] f_axi_awr_nbursts,
output reg [9-1:0] f_axi_wr_pending,
output reg [F_LGDEPTH-1:0] f_axi_rd_nbursts,
output reg [F_LGDEPTH-1:0] f_axi_rd_outstanding,
// ...
// }}}
// }}}
// }}}
);
// Parameter declarations
// {{{
localparam [1:0] OKAY = 2'b00;
localparam [1:0] EXOKAY = 2'b01;
localparam F_AXI_MAXWAIT = F_AXI_MAXSTALL;
// Because of the nature and size of bursts, which can be up to
// 256 in length (AxLEN), the F_LGDEPTH parameter necessary to capture
// this *must* be at least 8 bits wide
initial begin
assert(F_LGDEPTH > 8);
// Only power of two data sizes are supported from 8-bits on up to
// 1024
assert((DW == 8)
||(DW == 16)
||(DW == 32)
||(DW == 64)
||(DW == 128)
||(DW == 256)
||(DW == 512)
||(DW == 1024));
end
// }}}
// Internal register and wire declarations
// {{{
wire axi_rd_ack, axi_wr_ack, axi_ard_req, axi_awr_req, axi_wr_req;
// axi_rd_err, axi_wr_err;
//
assign axi_ard_req = (i_axi_arvalid)&&(i_axi_arready);
assign axi_awr_req = (i_axi_awvalid)&&(i_axi_awready);
assign axi_wr_req = (i_axi_wvalid )&&(i_axi_wready);
//
assign axi_rd_ack = (i_axi_rvalid)&&(i_axi_rready);
assign axi_wr_ack = (i_axi_bvalid)&&(i_axi_bready);
// assign axi_rd_err = (axi_rd_ack)&&(i_axi_rresp[1]);
// assign axi_wr_err = (axi_wr_ack)&&(i_axi_bresp[1]);
//
// ...
//
// Within the slave core, we will *assume* properties from the master,
// and *assert* properties of signals coming from the slave and
// returning to the master. This order will be reversed within the
// master, and the following two definitions help us do that.
//
// Similarly, we will always *assert* local values of our own necessary
// for checks below. Those will use the assert() keyword, rather than
// either of these two macros.
`define SLAVE_ASSUME assume
`define SLAVE_ASSERT assert
//
// Setup
//
// integer k;
initial f_past_valid = 1'b0;
always @(posedge i_clk)
f_past_valid <= 1'b1;
always @(*)
if (!f_past_valid)
assume(!i_axi_reset_n);
// }}}
////////////////////////////////////////////////////////////////////////
//
// Reset properties
// {{{
////////////////////////////////////////////////////////////////////////
//
// Insist that the reset signal start out asserted (negative), and
// remain so for 16 clocks.
//
generate if (F_OPT_ASSUME_RESET)
begin : ASSUME_INITIAL_RESET
always @(*)
if (!f_past_valid)
assume(!i_axi_reset_n);
end else begin : ASSERT_INITIAL_RESET
always @(*)
if (!f_past_valid)
assert(!i_axi_reset_n);
end endgenerate
//
//
// If asserted, the reset must be asserted for a minimum of 16 clocks
initial f_reset_length = 0;
always @(posedge i_clk)
if (F_OPT_NO_RESET || i_axi_reset_n)
f_reset_length <= 0;
else if (!(&f_reset_length))
f_reset_length <= f_reset_length + 1'b1;
always @(posedge i_clk)
if ((f_past_valid)&& !F_OPT_NO_RESET
&& (!$past(i_axi_reset_n))&&(!$past(&f_reset_length)))
`SLAVE_ASSUME(!i_axi_reset_n);
//
// If the reset is not generated within this particular core, then it
// can be assumed if F_OPT_ASSUME_RESET is set
generate if (F_OPT_ASSUME_RESET && !F_OPT_NO_RESET)
begin : ASSUME_RESET
always @(posedge i_clk)
if ((f_past_valid)&&(!$past(i_axi_reset_n))&&(!$past(&f_reset_length)))
assume(!i_axi_reset_n);
always @(*)
if ((f_reset_length > 0)&&(f_reset_length < 4'hf))
assume(!i_axi_reset_n);
end else if (!F_OPT_NO_RESET)
begin : ASSERT_RESET
always @(posedge i_clk)
if ((f_past_valid)&&(!$past(i_axi_reset_n))&&(!$past(&f_reset_length)))
assert(!i_axi_reset_n);
always @(*)
if ((f_reset_length > 0)&&(f_reset_length < 4'hf))
assert(!i_axi_reset_n);
end endgenerate
//
// All of the xVALID signals *MUST* be set low on the clock following
// a reset. (See Fig A3-1) Not in the spec, but also checked here is
// that they must also be set low initially.
always @(posedge i_clk)
if ((!f_past_valid && F_OPT_INITIAL)||(f_past_valid && !$past(i_axi_reset_n)))
begin
`SLAVE_ASSUME(!i_axi_arvalid);
`SLAVE_ASSUME(!i_axi_awvalid);
`SLAVE_ASSUME(!i_axi_wvalid);
//
`SLAVE_ASSERT(!i_axi_bvalid);
`SLAVE_ASSERT(!i_axi_rvalid);
end
generate if (OPT_ASYNC_RESET)
begin
always @(*)
if (!i_axi_reset_n)
begin
`SLAVE_ASSUME(!i_axi_arvalid);
`SLAVE_ASSUME(!i_axi_awvalid);
`SLAVE_ASSUME(!i_axi_wvalid);
//
`SLAVE_ASSERT(!i_axi_bvalid);
`SLAVE_ASSERT(!i_axi_rvalid);
end
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// Stability properties--what happens if valid and not ready
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// Assume any response from the bus will not change prior to that
// response being accepted
always @(posedge i_clk)
if ((f_past_valid)&& $past(i_axi_reset_n)
&& (!OPT_ASYNC_RESET || i_axi_reset_n))
begin
// Write address channel
if ((f_past_valid)&&($past(i_axi_awvalid && !i_axi_awready)))
begin
`SLAVE_ASSUME(i_axi_awvalid);
`SLAVE_ASSUME($stable(i_axi_awaddr));
`SLAVE_ASSUME($stable(i_axi_awid));
`SLAVE_ASSUME($stable(i_axi_awlen));
`SLAVE_ASSUME($stable(i_axi_awsize));
`SLAVE_ASSUME($stable(i_axi_awburst));
`SLAVE_ASSUME($stable(i_axi_awlock));
`SLAVE_ASSUME($stable(i_axi_awcache));
`SLAVE_ASSUME($stable(i_axi_awprot));
`SLAVE_ASSUME($stable(i_axi_awqos));
end
// Write data channel
if ((f_past_valid)&&($past(i_axi_wvalid && !i_axi_wready)))
begin
`SLAVE_ASSUME(i_axi_wvalid);
`SLAVE_ASSUME($stable(i_axi_wstrb));
`SLAVE_ASSUME($stable(i_axi_wdata));
`SLAVE_ASSUME($stable(i_axi_wlast));
end
// Incoming Read address channel
if ((f_past_valid)&&($past(i_axi_arvalid && !i_axi_arready)))
begin
`SLAVE_ASSUME(i_axi_arvalid);
`SLAVE_ASSUME($stable(i_axi_arid));
`SLAVE_ASSUME($stable(i_axi_araddr));
`SLAVE_ASSUME($stable(i_axi_arlen));
`SLAVE_ASSUME($stable(i_axi_arsize));
`SLAVE_ASSUME($stable(i_axi_arburst));
`SLAVE_ASSUME($stable(i_axi_arlock));
`SLAVE_ASSUME($stable(i_axi_arcache));
`SLAVE_ASSUME($stable(i_axi_arprot));
`SLAVE_ASSUME($stable(i_axi_arqos));
end
// Assume any response from the bus will not change prior to
// that response being accepted
if ((f_past_valid)&&($past(i_axi_rvalid && !i_axi_rready)))
begin
`SLAVE_ASSERT(i_axi_rvalid);
`SLAVE_ASSERT($stable(i_axi_rid));
`SLAVE_ASSERT($stable(i_axi_rresp));
`SLAVE_ASSERT($stable(i_axi_rdata));
`SLAVE_ASSERT($stable(i_axi_rlast));
end
if ((f_past_valid)&&($past(i_axi_bvalid && !i_axi_bready)))
begin
`SLAVE_ASSERT(i_axi_bvalid);
`SLAVE_ASSERT($stable(i_axi_bid));
`SLAVE_ASSERT($stable(i_axi_bresp));
end
end
// }}}
////////////////////////////////////////////////////////////////////////
//
// Insist upon a maximum delay before a request is accepted
// {{{
////////////////////////////////////////////////////////////////////////
//
//
generate if (F_AXI_MAXWAIT > 0)
begin : CHECK_STALL_COUNT
reg [(F_LGDEPTH-1):0] f_axi_awstall,
f_axi_wstall,
f_axi_arstall;
//
// AXI write address channel
//
// Count the number of times AWVALID is true while AWREADY
// is false. These are stalls, and we want to insist on a
// minimum number of them. However, if BVALID && !BREADY,
// then there's a reason for not accepting anything more.
// Similarly, many cores will only ever accept one request
// at a time, hence we won't count things as stalls if
// WR-PENDING > 0.
initial f_axi_awstall = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(!i_axi_awvalid)||(i_axi_awready)
||(f_axi_wr_pending > 0))
f_axi_awstall <= 0;
else if ((!i_axi_bvalid)||(i_axi_bready))
f_axi_awstall <= f_axi_awstall + 1'b1;
always @(*)
`SLAVE_ASSERT(f_axi_awstall < F_AXI_MAXWAIT);
//
// AXI write data channel
//
// Count the number of clock cycles that the write data
// channel is stalled, that is while WVALID && !WREADY.
// Since things can back up if BVALID & !BREADY, we avoid
// counting clock cycles in that circumstance
initial f_axi_wstall = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(!i_axi_wvalid)||(i_axi_wready)
||(f_axi_wr_pending == 0 && i_axi_wvalid))
f_axi_wstall <= 0;
else if ((!i_axi_bvalid)||(i_axi_bready))
f_axi_wstall <= f_axi_wstall + 1'b1;
always @(*)
`SLAVE_ASSERT(f_axi_wstall < F_AXI_MAXWAIT);
//
// AXI read address channel
//
// Similar to the first two above, once the master raises
// ARVALID, insist that the slave respond within a minimum
// number of clock cycles. Exceptions include any time
// RVALID is true, since that can back up the whole system,
// and any time the number of bursts is greater than zero,
// since many slaves can only accept one request at a time.
initial f_axi_arstall = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(!i_axi_arvalid)||(i_axi_arready)
||(i_axi_rvalid)||(f_axi_rd_nbursts > 0))
f_axi_arstall <= 0;
else
f_axi_arstall <= f_axi_arstall + 1'b1;
always @(*)
`SLAVE_ASSERT(f_axi_arstall < F_AXI_MAXWAIT);
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// Insist upon a maximum delay before any response is accepted
// {{{
////////////////////////////////////////////////////////////////////////
//
// These are separate from the earlier ones, in case you wish to
// control them separately. For example, an interconnect might be
// forced to let a channel wait indefinitely for access, but it might
// not be appropriate to require the response to be able to wait
// indefinitely as well
//
generate if (F_AXI_MAXRSTALL > 0)
begin : CHECK_RESPONSE_STALLS
// {{{
reg [(F_LGDEPTH-1):0] f_axi_wvstall,
f_axi_bstall,
f_axi_rstall;
// }}}
// f_axi_wvstall : AXI write channel valid
// {{{
// The first master stall check: guarantee that the master
// provides the required write data in fairly short order,
// and without much delay. That is, once AWVALID && AWREADY
// are true, the slave needs to provide the W* values
initial f_axi_wvstall = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(i_axi_wvalid)
||(i_axi_bvalid && !i_axi_bready)
||(f_axi_wr_pending == 0))
f_axi_wvstall <= 0;
else
f_axi_wvstall <= f_axi_wvstall + 1'b1;
always @(*)
`SLAVE_ASSUME(f_axi_wvstall < F_AXI_MAXRSTALL);
// }}}
// f_axi_bstall: AXI write response channel
// {{{
// Insist on a maximum number of clocks that BVALID can be
// high while BREADY is low
initial f_axi_bstall = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(!i_axi_bvalid)||(i_axi_bready))
f_axi_bstall <= 0;
else
f_axi_bstall <= f_axi_bstall + 1'b1;
always @(*)
`SLAVE_ASSUME(f_axi_bstall < F_AXI_MAXRSTALL);
// }}}
// f_axi_rstall: AXI read response channel
// {{{
// Insist on a maximum number of clocks that RVALID can be
// high while RREADY is low
initial f_axi_rstall = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(!i_axi_rvalid)||(i_axi_rready))
f_axi_rstall <= 0;
else
f_axi_rstall <= f_axi_rstall + 1'b1;
always @(*)
`SLAVE_ASSUME(f_axi_rstall < F_AXI_MAXRSTALL);
// }}}
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// Count outstanding transactions.
// {{{
////////////////////////////////////////////////////////////////////////
//
// With these measures, we count once per any burst.
//
// ...
initial f_axi_wr_pending = 0;
// ...
always @(posedge i_clk)
if (!i_axi_reset_n)
begin
f_axi_wr_pending <= 0;
// ...
end else case({ axi_awr_req, axi_wr_req })
2'b10: begin
// {{{
f_axi_wr_pending <= i_axi_awlen+1;
// ...
end
// }}}
2'b01: begin
// {{{
`SLAVE_ASSUME(f_axi_wr_pending > 0);
f_axi_wr_pending <= f_axi_wr_pending - 1'b1;
`SLAVE_ASSUME(!i_axi_wlast || (f_axi_wr_pending == 1));
// ...
end
// }}}
2'b11: begin
// {{{
// ...
if (f_axi_wr_pending > 0)
f_axi_wr_pending <= i_axi_awlen+1;
else begin
f_axi_wr_pending <= i_axi_awlen;
// ...
end end
// }}}
default: begin end
endcase
// }}}
// ...
//
// Insist that no WVALID value show up prior to a AWVALID value. The
// address *MUST* come first. Further, while waiting for the write
// data, NO OTHER WRITE ADDRESS may be permitted. This is not strictly
// required by the specification, but it is required in order to make
// these properties work (currently--I might revisit this later)
//
// ...
// f_axi_awr_nbursts
// {{{
// Count the number of outstanding BVALID's to expect
initial f_axi_awr_nbursts = 0;
always @(posedge i_clk)
if (!i_axi_reset_n)
f_axi_awr_nbursts <= 0;
else case({ (axi_awr_req), (axi_wr_ack) })
2'b10: f_axi_awr_nbursts <= f_axi_awr_nbursts + 1'b1;
2'b01: f_axi_awr_nbursts <= f_axi_awr_nbursts - 1'b1;
default: begin end
endcase
// }}}
//
// Count the number of reads bursts outstanding. This defines the
// number of RDVALID && RLAST's we expect to see before becoming idle
//
initial f_axi_rd_nbursts = 0;
always @(posedge i_clk)
if (!i_axi_reset_n)
f_axi_rd_nbursts <= 0;
else case({ (axi_ard_req), (axi_rd_ack)&&(i_axi_rlast) })
2'b01: f_axi_rd_nbursts <= f_axi_rd_nbursts - 1'b1;
2'b10: f_axi_rd_nbursts <= f_axi_rd_nbursts + 1'b1;
default: begin end
endcase
// }}}
// f_axi_rd_outstanding
// {{{
// f_axi_rd_outstanding counts the number of RDVALID's we expect to
// see before becoming idle. This must always be greater than or
// equal to the number of RVALID & RLAST's counted above
//
initial f_axi_rd_outstanding = 0;
always @(posedge i_clk)
if (!i_axi_reset_n)
f_axi_rd_outstanding <= 0;
else case({ (axi_ard_req), (axi_rd_ack) })
// Verilator lint_off WIDTH
2'b01: f_axi_rd_outstanding <= f_axi_rd_outstanding - 1'b1;
2'b10: f_axi_rd_outstanding <= f_axi_rd_outstanding + i_axi_arlen+1;
2'b11: f_axi_rd_outstanding <= f_axi_rd_outstanding + i_axi_arlen;
// Verilator lint_on WIDTH
default: begin end
endcase
// }}}
// Overflow checking
// {{{
// Do not let the number of outstanding requests overflow. This is
// a responsibility of the master to never allow 2^F_LGDEPTH-1
// requests to be outstanding.
//
always @(*)
`SLAVE_ASSERT(f_axi_rd_outstanding < {(F_LGDEPTH){1'b1}});
always @(*)
`SLAVE_ASSERT(f_axi_awr_nbursts < {(F_LGDEPTH){1'b1}});
always @(*)
`SLAVE_ASSERT(f_axi_wr_pending <= 256);
always @(*)
`SLAVE_ASSERT(f_axi_rd_nbursts < {(F_LGDEPTH){1'b1}});
// }}}
////////////////////////////////////////////////////////////////////////
//
// Read Burst counting
//
always @(*)
assert(f_axi_rd_nbursts <= f_axi_rd_outstanding);
always @(*)
assert((f_axi_rd_nbursts == 0)==(f_axi_rd_outstanding==0));
//
//
// ...
//
// AXI read data channel signals
// {{{
always @(*)
if (i_axi_rvalid && (F_OPT_INITIAL || f_past_valid))
begin
`SLAVE_ASSERT(f_axi_rd_outstanding > 0);
`SLAVE_ASSERT(f_axi_rd_nbursts > 0);
// ...
end
always @(*)
if (!F_OPT_INITIAL && !f_past_valid)
next_rd_nbursts = 0;
else
next_rd_nbursts = f_axi_rd_nbursts
- (i_axi_rvalid && i_axi_rlast ? 1:0);
always @(*)
if (!F_OPT_INITIAL && !f_past_valid)
next_rd_outstanding = 0;
else
next_rd_outstanding = f_axi_rd_outstanding
- (i_axi_rvalid ? 1:00);
// ...
always @(*)
`SLAVE_ASSERT(next_rd_nbursts <= next_rd_outstanding);
// ...
always @(*)
`SLAVE_ASSERT({ 8'h00, next_rd_outstanding }
<= { next_rd_nbursts, 8'h00 });
//
// ...
//
always @(*)
assert({ 8'h00, f_axi_rd_outstanding } <= { f_axi_rd_nbursts, 8'h0 });
//
// ...
//
always @(*)
assert({ 8'h00, f_axi_rd_outstanding } <= { f_axi_rd_nbursts, 8'h0 });
//
// ...
//
// }}}
////////////////////////////////////////////////////////////////////////
//
// Minimum delay to acknowledgment
// {{{
////////////////////////////////////////////////////////////////////////
//
// Insist that all responses are returned in less than a maximum delay
// In this case, we count responses within a burst, rather than entire
// bursts.
//
//
// A unique feature to the backpressure mechanism within AXI is that
// we have to reset our delay counters in the case of any push back,
// since the response can't move forward if the master isn't (yet)
// ready for it.
//
generate if (F_AXI_MAXDELAY > 0)
begin : CHECK_MAX_DELAY
reg [(F_LGDEPTH-1):0] f_axi_awr_ack_delay,
f_axi_rd_ack_delay;
// awr_ack_delay
// {{{
initial f_axi_awr_ack_delay = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(i_axi_bvalid)||(i_axi_wvalid)
||((f_axi_awr_nbursts == 1)
&&(f_axi_wr_pending>0))
||(f_axi_awr_nbursts == 0))
f_axi_awr_ack_delay <= 0;
else
f_axi_awr_ack_delay <= f_axi_awr_ack_delay + 1'b1;
// }}}
// rd_ack_delay
// {{{
initial f_axi_rd_ack_delay = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(i_axi_rvalid)||(f_axi_rd_outstanding==0))
f_axi_rd_ack_delay <= 0;
else
f_axi_rd_ack_delay <= f_axi_rd_ack_delay + 1'b1;
// }}}
always @(*)
`SLAVE_ASSERT(f_axi_awr_ack_delay < F_AXI_MAXDELAY);
always @(*)
`SLAVE_ASSERT(f_axi_rd_ack_delay < F_AXI_MAXDELAY);
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// Acknowledgements must follow requests
// {{{
////////////////////////////////////////////////////////////////////////
//
// The outstanding count is a count of bursts, but the acknowledgements
// we are looking for are individual. Hence, there should be no
// individual acknowledgements coming back if there's no outstanding
// burst.
//
//
// AXI write response channel
//
//
// ...
//
//
// Cannot have outstanding values if there aren't any outstanding
// bursts
//
// ...
//
always @(posedge i_clk)
if (f_axi_awr_nbursts == 0)
`SLAVE_ASSERT(f_axi_wr_pending == 0);
//
// ...
//
//
// Because we can't accept multiple AW* requests prior to the
// last WVALID && WLAST, the AWREADY signal *MUST* be high while
// waiting
//
always @(*)
if (f_axi_wr_pending > 1)
`SLAVE_ASSERT(!i_axi_awready);
// }}}
////////////////////////////////////////////////////////////////////////
//
// Write address checking
// {{{
////////////////////////////////////////////////////////////////////////
//
//
initial f_axi_wr_len = 0;
always @(posedge i_clk)
begin
//
// ...
//
// f_axi_wr_size maximums
// {{{
if (!OPT_NARROW_BURST)
begin
// In this case, all size parameters are fixed.
// Let's remove them from the solvers logic choices
// for optimization purposes
//
if (DW == 8)
f_axi_wr_size <= 0;
else if (DW == 16)
f_axi_wr_size <= 1;
else if (DW == 32)
f_axi_wr_size <= 2;
else if (DW == 64)
f_axi_wr_size <= 3;
else if (DW == 128)
f_axi_wr_size <= 4;
else if (DW == 256)
f_axi_wr_size <= 5;
else if (DW == 512)
f_axi_wr_size <= 6;
else // if (DW == 1024)
f_axi_wr_size <= 7;
end
// }}}
end
//
// ...
//
// }}}
// Write strobe validity checking
// {{{
always @(*)
// Verilator lint_off WIDTH
wstb_addr = f_axi_wr_addr;
// Verilator lint_on WIDTH
faxi_wstrb #(.C_AXI_DATA_WIDTH(DW))
f_wstrbck (wstb_addr, this_awsize, i_axi_wstrb, wstb_valid);
// Insist the only the appropriate bits be valid
// For example, if the lower address bit is one, then the
// strobe LSB cannot be 1, but must be zero. This is just
// enforcing the rules of the sub-address which must match
// the write strobe. An STRB of 0 is always allowed.
//
always @(*)
if (i_axi_wvalid && (f_past_valid || F_OPT_INITIAL))
`SLAVE_ASSUME(wstb_valid);
// }}}
//
// Write induction properties
// {{{
// These are actual assert()s and not `SLAVE_ASSERT or `SLAVE_ASSUMEs
// because they are testing the functionality of this core and its local
// logical registers, not so much the functionality of the core we are
// testing
//
always @(*)
val_wr_len = f_axi_wr_pending[7:0]-1;
always @(*)
if (f_axi_wr_pending > 0)
assert(f_axi_wr_pending <= f_axi_wr_len + 1);
always @(*)
assert(f_axi_wr_pending <= 9'h100);
always @(*)
if ((f_axi_wr_pending > 0)&&(f_axi_wr_burst == 2'b10))
assert((f_axi_wr_len == 1)
||(f_axi_wr_len == 3)
||(f_axi_wr_len == 7)
||(f_axi_wr_len == 15));
// }}}
////////////////////////////////////////////////////////////////////////
//
// Read address checking
// {{{
////////////////////////////////////////////////////////////////////////
//
//
always @(posedge i_clk)
begin
//
// ...
//
// f_axi_rd_cksize limiting
// {{{
if (!OPT_NARROW_BURST)
begin
// In this case, all size parameters are fixed.
// Let's remove them from the solvers logic choices
// for optimization purposes
//
if (DW == 8)
f_axi_rd_cksize <= 0;
else if (DW == 16)
f_axi_rd_cksize <= 1;
else if (DW == 32)
f_axi_rd_cksize <= 2;
else if (DW == 64)
f_axi_rd_cksize <= 3;
else if (DW == 128)
f_axi_rd_cksize <= 4;
else if (DW == 256)
f_axi_rd_cksize <= 5;
else if (DW == 512)
f_axi_rd_cksize <= 6;
else // if (DW == 1024)
f_axi_rd_cksize <= 7;
end
// }}}
end
// }}}
////////////////////////////////////////////////////////////////////////
//
// Read induction properties
// {{{
////////////////////////////////////////////////////////////////////////
//
// These are actual assert()s and not `SLAVE_ASSERT or `SLAVE_ASSUMEs
// because they are testing the functionality of this core and its local
// logical registers, not so much the functionality of the core we are
// testing
//
// ...
//
////////////////////////////////////////////////////////////////////////
//
// Exclusive access properties
// {{{
////////////////////////////////////////////////////////////////////////
generate if (!OPT_EXCLUSIVE)
begin : EXCLUSIVE_DISALLOWED
// {{{
//
// Without exclusive access support, the master shall not issue
// exclusive access requests
always @(*)
if (F_OPT_INITIAL || f_past_valid)
begin
`SLAVE_ASSUME(!i_axi_awvalid || !i_axi_awlock);
`SLAVE_ASSUME(!i_axi_arvalid || !i_axi_arlock);
end
// Similarly, without exclusive access support, the slave
// shall not respond with an okay indicating that exclusive
// access was supported.
always @(*)
if (F_OPT_INITIAL || f_past_valid)
begin
`SLAVE_ASSERT(!i_axi_bvalid || i_axi_bresp != EXOKAY);
`SLAVE_ASSERT(!i_axi_rvalid || i_axi_rresp != EXOKAY);
end
// }}}
end else begin : EXCLUSIVE_ACCESS_CHECKER
// {{{
//
// 1. Exclusive access burst lengths max out at 16
// 2. Exclusive access bursts must be aligned
// 3. Write must take place when the read channel is idle (on
// this ID)
// 4. Read returns may not switch between EXOKAY and OKAY. Once
// committed, can only switch to SLVERR or DECERR.
// 5. An address that can handle exclusive access will always
// return EXOKAY on a read attempt.
//
reg [1:0] exfsm_state;
reg [AW-1:0] exreq_addr;
reg [7:0] exreq_len;
reg [1:0] exreq_burst;
reg [2:0] exreq_size;
reg [F_LGDEPTH-1:0] rdid_bursts_to_lock;
reg [F_LGDEPTH-1:0] wrid_bursts_to_exwrite;
reg exreq_return;
// awcache check
// {{{
always @(*)
if (i_axi_awvalid && i_axi_awlock && (F_OPT_INITIAL || f_past_valid))
begin
// ...
end
// }}}
// arcache check
// {{{
always @(*)
if (i_axi_arvalid && i_axi_arlock && (F_OPT_INITIAL || f_past_valid))
begin
`SLAVE_ASSUME(!i_axi_arcache[0]);
end
// }}}
//
// ...
//
// Exclusive access state machine
// {{{