forked from landreman/regcoil
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvd_scan.f90
376 lines (343 loc) · 15 KB
/
svd_scan.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
subroutine svd_scan
use global_variables
use stel_constants
use stel_kinds
implicit none
integer :: iflag, tic, toc, countrate
real(dp), dimension(:,:), allocatable :: this_current_potential
real(dp), dimension(:), allocatable :: RHS, solution, singular_values, U_transpose_times_RHS
real(dp), dimension(:), allocatable :: KDifference_x, KDifference_y, KDifference_z
real(dp), dimension(:,:), allocatable :: this_K2_times_N, svd_matrix, U, VT
real(dp) :: factor_theta, factor_zeta, factor
integer :: ilambda, itheta, izeta, index, n_singular_values
! Variables needed by LAPACK:
integer :: INFO, LWORK, M, N, LDA, LDU, LDVT
real(dp), dimension(:), allocatable :: WORK
integer, dimension(:), allocatable :: IWORK
character :: JOBZ
deallocate(lambda)
! Nescoil seems to require keeping at least 2 singular values in a svd scan. We will do the same to keep the number
! of solutions the same as nescoil.
nlambda = num_basis_functions-1
allocate(lambda(nlambda))
lambda=0
allocate(solution(num_basis_functions), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(chi2_B(nlambda), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(chi2_K(nlambda), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(max_Bnormal(nlambda), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(max_K(nlambda), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(current_potential(ntheta_coil,nzeta_coil,nlambda), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(single_valued_current_potential_thetazeta(ntheta_coil,nzeta_coil,nlambda), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(this_current_potential(ntheta_coil,nzeta_coil), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(single_valued_current_potential_mn(num_basis_functions,nlambda), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(Bnormal_total(ntheta_plasma,nzeta_plasma,nlambda), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(K2(ntheta_coil,nzeta_coil,nlambda), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(KDifference_x(ntheta_coil*nzeta_coil), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(KDifference_y(ntheta_coil*nzeta_coil), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(KDifference_z(ntheta_coil*nzeta_coil), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(this_K2_times_N(ntheta_coil,nzeta_coil), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(svd_matrix(ntheta_plasma*nzeta_plasma, num_basis_functions), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(RHS(ntheta_plasma*nzeta_plasma), stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
print *,"Beginning SVD."
call system_clock(tic,countrate)
if (num_basis_functions > ntheta_plasma*nzeta_plasma) then
print *,"Error! The svd scan is only designed to work when num_basis_functions <= ntheta_plasma*nzeta_plasma"
stop
end if
index=0
do itheta=1,ntheta_plasma
do izeta = 1,nzeta_plasma
!index = index+1
index = (izeta-1)*ntheta_plasma + itheta
factor = sqrt(norm_normal_plasma(itheta,izeta))
RHS(index) = -(Bnormal_from_plasma_current(itheta,izeta) + Bnormal_from_net_coil_currents(itheta,izeta))*factor
svd_matrix(index,:) = g(index,:) / factor
end do
end do
!JOBZ='A' ! Compute ALL of the singular vectors.
JOBZ='S' ! Compute only the first min(M,N) singular vectors, which is N in our case.
M = ntheta_plasma*nzeta_plasma
N = num_basis_functions
LDA = M
LDU = M
LDVT = N
! This next formula comes from the LAPACK documentation at the end of the file.
LWORK = max( 3*min(M,N) + max(max(M,N),7*min(M,N)), &
3*min(M,N) + max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)), &
min(M,N)*(6+4*min(M,N))+max(M,N))
allocate(WORK(LWORK),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(IWORK(8*min(M,N)),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
n_singular_values = min(M,N)
allocate(singular_values(n_singular_values),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(U(M,N),stat=iflag) ! If all singular vectors were computed, U would be M*M. But here we only compute the first N singular vectors,
! so U is M*N.
if (iflag .ne. 0) stop 'Allocation error!'
allocate(VT(N,N),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
! Call LAPACK to do the SVD:
! Note that svd_matrix is destroyed by LAPACK!
call DGESDD(JOBZ, M, N, svd_matrix, LDA, singular_values, U, LDU, &
VT, LDVT, WORK, LWORK, IWORK, INFO)
if (INFO==0) then
print *,"SVD (DGESDD) successful."
if (n_singular_values<5) then
print *,"Singular values:",singular_values
else
print *,"First 5 singular values:",singular_values(1:5)
print *,"Last 5 singular values:", &
singular_values(n_singular_values-4:n_singular_values)
end if
else if (INFO>0) then
print *,"Error in SVD (DGESDD): Did not converge."
else
print *,"Error in SVD (DGESDD): Argument",INFO," was invalid."
end if
call system_clock(toc)
print *,"Took ",real(toc-tic)/countrate," sec."
call system_clock(tic)
allocate(U_transpose_times_RHS(num_basis_functions),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
U_transpose_times_RHS = matmul(transpose(U),RHS)
call system_clock(toc)
print *,"matmul: ",real(toc-tic)/countrate," sec."
factor_zeta = net_poloidal_current_Amperes / twopi
factor_theta = net_toroidal_current_Amperes / twopi
!solution = 0
! Add the contribution from the ilambda-th singular vectors and singular value:
solution = solution + VT(1,:) * (1/singular_values(1)) * U_transpose_times_RHS(1)
do ilambda = nlambda,1,-1
print "(a,e10.3,a,i3,a,i3,a)"," Solving system for lambda=",lambda(ilambda)," (",ilambda," of ",nlambda,")"
call system_clock(tic,countrate)
! Add the contribution from the ilambda-th singular vectors and singular value:
!solution = solution + VT(ilambda,:) * (1/singular_values(ilambda)) * U_transpose_times_RHS(ilambda)
! Go in reverse order, like NESCOIL
index = num_basis_functions-ilambda+1
print *,"index=",index
solution = solution + VT(index,:) * (1/singular_values(index)) * U_transpose_times_RHS(index)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Now compute diagnostics
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
single_valued_current_potential_mn(:,ilambda) = solution
this_current_potential = reshape(matmul(basis_functions, solution), (/ ntheta_coil, nzeta_coil /)) ! Could use BLAS2 for this line for extra speed.
single_valued_current_potential_thetazeta(:,:,ilambda) = this_current_potential
do izeta = 1,nzeta_coil
do itheta = 1,ntheta_coil
this_current_potential(itheta,izeta) = this_current_potential(itheta,izeta) &
+ factor_zeta*zeta_coil(izeta) + factor_theta*theta_coil(itheta)
end do
end do
current_potential(:,:,ilambda) = this_current_potential
KDifference_x = d_x - matmul(f_x, solution)
KDifference_y = d_y - matmul(f_y, solution)
KDifference_z = d_z - matmul(f_z, solution)
this_K2_times_N = reshape(KDifference_x*KDifference_x + KDifference_y*KDifference_y + KDifference_z*KDifference_z, (/ ntheta_coil, nzeta_coil /)) &
/ norm_normal_coil
chi2_K(ilambda) = nfp * dtheta_coil * dzeta_coil * sum(this_K2_times_N)
K2(:,:,ilambda) = this_K2_times_N / norm_normal_coil
Bnormal_total(:,:,ilambda) = (reshape(matmul(g,solution),(/ ntheta_plasma, nzeta_plasma /)) / norm_normal_plasma) &
+ Bnormal_from_plasma_current + Bnormal_from_net_coil_currents
max_Bnormal(ilambda) = maxval(abs(Bnormal_total(:,:,ilambda)))
max_K(ilambda) = sqrt(maxval(K2(:,:,ilambda)))
chi2_B(ilambda) = nfp * dtheta_plasma * dzeta_plasma &
* sum(Bnormal_total(:,:,ilambda) * Bnormal_total(:,:,ilambda) * norm_normal_plasma)
call system_clock(toc)
print *," Diagnostics: ",real(toc-tic)/countrate," sec."
print *," chi2_B:",chi2_B(ilambda),"chi2_K:",chi2_K(ilambda)
end do
end subroutine svd_scan
! Here is the LAPACK documentation for the relevant SVD subroutine:
!!$* SUBROUTINE DGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
!!$* LWORK, IWORK, INFO )
!!$*
!!$* .. Scalar Arguments ..
!!$* CHARACTER JOBZ
!!$* INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
!!$* ..
!!$* .. Array Arguments ..
!!$* INTEGER IWORK( * )
!!$* DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ),
!!$* $ VT( LDVT, * ), WORK( * )
!!$* ..
!!$*
!!$*
!!$*> \par Purpose:
!!$* =============
!!$*>
!!$*> \verbatim
!!$*>
!!$*> DGESDD computes the singular value decomposition (SVD) of a real
!!$*> M-by-N matrix A, optionally computing the left and right singular
!!$*> vectors. If singular vectors are desired, it uses a
!!$*> divide-and-conquer algorithm.
!!$*>
!!$*> The SVD is written
!!$*>
!!$*> A = U * SIGMA * transpose(V)
!!$*>
!!$*> where SIGMA is an M-by-N matrix which is zero except for its
!!$*> min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
!!$*> V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
!!$*> are the singular values of A; they are real and non-negative, and
!!$*> are returned in descending order. The first min(m,n) columns of
!!$*> U and V are the left and right singular vectors of A.
!!$*>
!!$*> Note that the routine returns VT = V**T, not V.
!!$*>
!!$*> The divide and conquer algorithm makes very mild assumptions about
!!$*> floating point arithmetic. It will work on machines with a guard
!!$*> digit in add/subtract, or on those binary machines without guard
!!$*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
!!$*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
!!$*> without guard digits, but we know of none.
!!$*> \endverbatim
!!$*
!!$* Arguments:
!!$* ==========
!!$*
!!$*> \param[in] JOBZ
!!$*> \verbatim
!!$*> JOBZ is CHARACTER*1
!!$*> Specifies options for computing all or part of the matrix U:
!!$*> = 'A': all M columns of U and all N rows of V**T are
!!$*> returned in the arrays U and VT;
!!$*> = 'S': the first min(M,N) columns of U and the first
!!$*> min(M,N) rows of V**T are returned in the arrays U
!!$*> and VT;
!!$*> = 'O': If M >= N, the first N columns of U are overwritten
!!$*> on the array A and all rows of V**T are returned in
!!$*> the array VT;
!!$*> otherwise, all columns of U are returned in the
!!$*> array U and the first M rows of V**T are overwritten
!!$*> in the array A;
!!$*> = 'N': no columns of U or rows of V**T are computed.
!!$*> \endverbatim
!!$*>
!!$*> \param[in] M
!!$*> \verbatim
!!$*> M is INTEGER
!!$*> The number of rows of the input matrix A. M >= 0.
!!$*> \endverbatim
!!$*>
!!$*> \param[in] N
!!$*> \verbatim
!!$*> N is INTEGER
!!$*> The number of columns of the input matrix A. N >= 0.
!!$*> \endverbatim
!!$*>
!!$*> \param[in,out] A
!!$*> \verbatim
!!$*> A is DOUBLE PRECISION array, dimension (LDA,N)
!!$*> On entry, the M-by-N matrix A.
!!$*> On exit,
!!$*> if JOBZ = 'O', A is overwritten with the first N columns
!!$*> of U (the left singular vectors, stored
!!$*> columnwise) if M >= N;
!!$*> A is overwritten with the first M rows
!!$*> of V**T (the right singular vectors, stored
!!$*> rowwise) otherwise.
!!$*> if JOBZ .ne. 'O', the contents of A are destroyed.
!!$*> \endverbatim
!!$*>
!!$*> \param[in] LDA
!!$*> \verbatim
!!$*> LDA is INTEGER
!!$*> The leading dimension of the array A. LDA >= max(1,M).
!!$*> \endverbatim
!!$*>
!!$*> \param[out] S
!!$*> \verbatim
!!$*> S is DOUBLE PRECISION array, dimension (min(M,N))
!!$*> The singular values of A, sorted so that S(i) >= S(i+1).
!!$*> \endverbatim
!!$*>
!!$*> \param[out] U
!!$*> \verbatim
!!$*> U is DOUBLE PRECISION array, dimension (LDU,UCOL)
!!$*> UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
!!$*> UCOL = min(M,N) if JOBZ = 'S'.
!!$*> If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
!!$*> orthogonal matrix U;
!!$*> if JOBZ = 'S', U contains the first min(M,N) columns of U
!!$*> (the left singular vectors, stored columnwise);
!!$*> if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
!!$*> \endverbatim
!!$*>
!!$*> \param[in] LDU
!!$*> \verbatim
!!$*> LDU is INTEGER
!!$*> The leading dimension of the array U. LDU >= 1; if
!!$*> JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
!!$*> \endverbatim
!!$*>
!!$*> \param[out] VT
!!$*> \verbatim
!!$*> VT is DOUBLE PRECISION array, dimension (LDVT,N)
!!$*> If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
!!$*> N-by-N orthogonal matrix V**T;
!!$*> if JOBZ = 'S', VT contains the first min(M,N) rows of
!!$*> V**T (the right singular vectors, stored rowwise);
!!$*> if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
!!$*> \endverbatim
!!$*>
!!$*> \param[in] LDVT
!!$*> \verbatim
!!$*> LDVT is INTEGER
!!$*> The leading dimension of the array VT. LDVT >= 1; if
!!$*> JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
!!$*> if JOBZ = 'S', LDVT >= min(M,N).
!!$*> \endverbatim
!!$*>
!!$*> \param[out] WORK
!!$*> \verbatim
!!$*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!!$*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
!!$*> \endverbatim
!!$*>
!!$*> \param[in] LWORK
!!$*> \verbatim
!!$*> LWORK is INTEGER
!!$*> The dimension of the array WORK. LWORK >= 1.
!!$*> If JOBZ = 'N',
!!$*> LWORK >= 3*min(M,N) + max(max(M,N),7*min(M,N)).
!!$*> If JOBZ = 'O',
!!$*> LWORK >= 3*min(M,N) +
!!$*> max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)).
!!$*> If JOBZ = 'S' or 'A'
!!$*> LWORK >= min(M,N)*(6+4*min(M,N))+max(M,N)
!!$*> For good performance, LWORK should generally be larger.
!!$*> If LWORK = -1 but other input arguments are legal, WORK(1)
!!$*> returns the optimal LWORK.
!!$*> \endverbatim
!!$*>
!!$*> \param[out] IWORK
!!$*> \verbatim
!!$*> IWORK is INTEGER array, dimension (8*min(M,N))
!!$*> \endverbatim
!!$*>
!!$*> \param[out] INFO
!!$*> \verbatim
!!$*> INFO is INTEGER
!!$*> = 0: successful exit.
!!$*> < 0: if INFO = -i, the i-th argument had an illegal value.
!!$*> > 0: DBDSDC did not converge, updating process failed.
!!$*> \endverbatim