forked from fatchord/WaveRNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
99 lines (74 loc) · 3.09 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import glob
from utils.display import *
from utils.dsp import *
from utils import hparams as hp
from multiprocessing import Pool, cpu_count
from utils.paths import Paths
import pickle
import argparse
from utils.text.recipes import ljspeech
from utils.files import get_files
from pathlib import Path
# Helper functions for argument types
def valid_n_workers(num):
n = int(num)
if n < 1:
raise argparse.ArgumentTypeError('%r must be an integer greater than 0' % num)
return n
parser = argparse.ArgumentParser(description='Preprocessing for WaveRNN and Tacotron')
parser.add_argument('--path', '-p', help='directly point to dataset path (overrides hparams.wav_path')
parser.add_argument('--extension', '-e', metavar='EXT', default='.wav', help='file extension to search for in dataset folder')
parser.add_argument('--num_workers', '-w', metavar='N', type=valid_n_workers, default=cpu_count()-1, help='The number of worker threads to use for preprocessing')
parser.add_argument('--hp_file', metavar='FILE', default='hparams.py', help='The file to use for the hyperparameters')
args = parser.parse_args()
hp.configure(args.hp_file) # Load hparams from file
if args.path is None:
args.path = hp.wav_path
extension = args.extension
path = args.path
def convert_file(path: Path):
y = load_wav(path)
peak = np.abs(y).max()
if hp.peak_norm or peak > 1.0:
y /= peak
mel = melspectrogram(y)
if hp.voc_mode == 'RAW':
quant = encode_mu_law(y, mu=2**hp.bits) if hp.mu_law else float_2_label(y, bits=hp.bits)
elif hp.voc_mode == 'MOL':
quant = float_2_label(y, bits=16)
return mel.astype(np.float32), quant.astype(np.int64)
def process_wav(path: Path):
wav_id = path.stem
m, x = convert_file(path)
np.save(paths.mel/f'{wav_id}.npy', m, allow_pickle=False)
np.save(paths.quant/f'{wav_id}.npy', x, allow_pickle=False)
return wav_id, m.shape[-1]
wav_files = get_files(path, extension)
paths = Paths(hp.data_path, hp.voc_model_id, hp.tts_model_id)
print(f'\n{len(wav_files)} {extension[1:]} files found in "{path}"\n')
if len(wav_files) == 0:
print('Please point wav_path in hparams.py to your dataset,')
print('or use the --path option.\n')
else:
if not hp.ignore_tts:
text_dict = ljspeech(path)
with open(paths.data/'text_dict.pkl', 'wb') as f:
pickle.dump(text_dict, f)
n_workers = max(1, args.num_workers)
simple_table([
('Sample Rate', hp.sample_rate),
('Bit Depth', hp.bits),
('Mu Law', hp.mu_law),
('Hop Length', hp.hop_length),
('CPU Usage', f'{n_workers}/{cpu_count()}')
])
pool = Pool(processes=n_workers)
dataset = []
for i, (item_id, length) in enumerate(pool.imap_unordered(process_wav, wav_files), 1):
dataset += [(item_id, length)]
bar = progbar(i, len(wav_files))
message = f'{bar} {i}/{len(wav_files)} '
stream(message)
with open(paths.data/'dataset.pkl', 'wb') as f:
pickle.dump(dataset, f)
print('\n\nCompleted. Ready to run "python train_tacotron.py" or "python train_wavernn.py". \n')