forked from Project-MONAI/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare_patches.py
243 lines (196 loc) · 8.83 KB
/
prepare_patches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import math
import os
import pathlib
import shutil
from argparse import ArgumentParser
import numpy as np
import scipy.io as sio
import tqdm
from PIL import Image
def load_img(path):
return np.array(Image.open(path).convert("RGB"))
def load_ann(path):
"""
This function is specific to CoNSeP dataset.
If using other datasets, the code below may need to be modified.
"""
# assumes that ann is HxW
ann_inst = sio.loadmat(path)["inst_map"]
ann_type = sio.loadmat(path)["type_map"]
# merge classes for CoNSeP (utilise 3 nuclei classes and background keep the same with paper)
ann_type[(ann_type == 3) | (ann_type == 4)] = 3
ann_type[(ann_type == 5) | (ann_type == 6) | (ann_type == 7)] = 4
ann = np.dstack([ann_inst, ann_type])
ann = ann.astype("int32")
return ann
class PatchExtractor:
"""Extractor to generate patches with or without padding.
Turn on debug mode to see how it is done.
Args:
x : input image, should be of shape HWC
patch_size : a tuple of (h, w)
step_size : a tuple of (h, w)
Return:
a list of sub patches, each patch has dtype same as x
Examples:
>>> extractor = PatchExtractor((450, 450), (120, 120))
>>> img = np.full([1200, 1200, 3], 255, np.uint8)
>>> patches = extractor.extract(img, 'mirror')
"""
def __init__(self, patch_size, step_size):
self.patch_type = "mirror"
self.patch_size = patch_size
self.step_size = step_size
def __get_patch(self, x, ptx):
pty = (ptx[0] + self.patch_size[0], ptx[1] + self.patch_size[1])
win = x[ptx[0] : pty[0], ptx[1] : pty[1]]
assert (
win.shape[0] == self.patch_size[0] and win.shape[1] == self.patch_size[1]
), "[BUG] Incorrect Patch Size {0}".format(win.shape)
return win
def __extract_valid(self, x):
"""Extracted patches without padding, only work in case patch_size > step_size.
Note: to deal with the remaining portions which are at the boundary a.k.a
those which do not fit when slide left->right, top->bottom), we flip
the sliding direction then extract 1 patch starting from right / bottom edge.
There will be 1 additional patch extracted at the bottom-right corner.
Args:
x : input image, should be of shape HWC
patch_size : a tuple of (h, w)
step_size : a tuple of (h, w)
Return:
a list of sub patches, each patch is same dtype as x
"""
im_h = x.shape[0]
im_w = x.shape[1]
def extract_infos(length, patch_size, step_size):
flag = (length - patch_size) % step_size != 0
last_step = math.floor((length - patch_size) / step_size)
last_step = (last_step + 1) * step_size
return flag, last_step
h_flag, h_last = extract_infos(im_h, self.patch_size[0], self.step_size[0])
w_flag, w_last = extract_infos(im_w, self.patch_size[1], self.step_size[1])
sub_patches = []
# Deal with valid block
for row in range(0, h_last, self.step_size[0]):
for col in range(0, w_last, self.step_size[1]):
win = self.__get_patch(x, (row, col))
sub_patches.append(win)
# Deal with edge case
if h_flag:
row = im_h - self.patch_size[0]
for col in range(0, w_last, self.step_size[1]):
win = self.__get_patch(x, (row, col))
sub_patches.append(win)
if w_flag:
col = im_w - self.patch_size[1]
for row in range(0, h_last, self.step_size[0]):
win = self.__get_patch(x, (row, col))
sub_patches.append(win)
if h_flag and w_flag:
ptx = (im_h - self.patch_size[0], im_w - self.patch_size[1])
win = self.__get_patch(x, ptx)
sub_patches.append(win)
return sub_patches
def __extract_mirror(self, x):
"""Extracted patches with mirror padding the boundary such that the
central region of each patch is always within the orginal (non-padded)
image while all patches' central region cover the whole orginal image.
Args:
x : input image, should be of shape HWC
patch_size : a tuple of (h, w)
step_size : a tuple of (h, w)
Return:
a list of sub patches, each patch is same dtype as x
"""
diff_h = self.patch_size[0] - self.step_size[0]
padt = diff_h // 2
padb = diff_h - padt
diff_w = self.patch_size[1] - self.step_size[1]
padl = diff_w // 2
padr = diff_w - padl
pad_type = "reflect"
x = np.lib.pad(x, ((padt, padb), (padl, padr), (0, 0)), pad_type)
sub_patches = self.__extract_valid(x)
return sub_patches
def extract(self, x, patch_type):
patch_type = patch_type.lower()
self.patch_type = patch_type
if patch_type == "valid":
return self.__extract_valid(x)
elif patch_type == "mirror":
return self.__extract_mirror(x)
else:
raise ValueError(f"Unknown Patch Type {patch_type}")
def main(cfg):
xtractor = PatchExtractor(cfg["patch_size"], cfg["step_size"])
for phase in cfg["phase"]:
img_dir = os.path.join(cfg["root"], f"{phase}/Images")
ann_dir = os.path.join(cfg["root"], f"{phase}/Labels")
file_list = glob.glob(os.path.join(ann_dir, f"*{cfg['label_suffix']}"))
file_list.sort() # ensure same ordering across platform
out_dir = f"{cfg['root']}/Prepared/{phase}"
if os.path.isdir(out_dir):
shutil.rmtree(out_dir)
os.makedirs(out_dir)
pbar_format = "Process File: |{bar}| {n_fmt}/{total_fmt}[{elapsed}<{remaining},{rate_fmt}]"
pbarx = tqdm.tqdm(total=len(file_list), bar_format=pbar_format, ascii=True, position=0)
for file_path in file_list:
base_name = pathlib.Path(file_path).stem
img = load_img(f"{img_dir}/{base_name}.{cfg['image_suffix']}")
ann = load_ann(f"{ann_dir}/{base_name}.{cfg['label_suffix']}")
# *
img = np.concatenate([img, ann], axis=-1)
sub_patches = xtractor.extract(img, cfg["extract_type"])
pbar_format = "Extracting : |{bar}| {n_fmt}/{total_fmt}[{elapsed}<{remaining},{rate_fmt}]"
pbar = tqdm.tqdm(total=len(sub_patches), leave=False, bar_format=pbar_format, ascii=True, position=1)
for idx, patch in enumerate(sub_patches):
image_patch = patch[..., :3]
inst_map_patch = patch[..., 3:4]
type_map_patch = patch[..., 4:5]
np.save("{0}/{1}_{2:03d}_image.npy".format(out_dir, base_name, idx), image_patch)
np.save("{0}/{1}_{2:03d}_inst_map.npy".format(out_dir, base_name, idx), inst_map_patch)
np.save("{0}/{1}_{2:03d}_type_map.npy".format(out_dir, base_name, idx), type_map_patch)
pbar.update()
pbar.close()
# *
pbarx.update()
pbarx.close()
def parse_arguments():
parser = ArgumentParser(description="Extract patches from the original images")
parser.add_argument(
"--root",
type=str,
default="/workspace/Data/Pathology/CoNSeP",
help="root path to image folder containing training/test",
)
parser.add_argument(
"--phase",
nargs="+",
type=str,
default=["Train", "Test"],
dest="phase",
help="Phases of data need to be extracted",
)
parser.add_argument("--type", type=str, default="mirror", dest="extract_type", help="Choose 'mirror' or 'valid'")
parser.add_argument("--is", type=str, default="png", dest="image_suffix", help="image file name suffix")
parser.add_argument("--ls", type=str, default="mat", dest="label_suffix", help="label file name suffix")
parser.add_argument("--ps", nargs="+", type=int, default=[540, 540], dest="patch_size", help="patch size")
parser.add_argument("--ss", nargs="+", type=int, default=[164, 164], dest="step_size", help="patch size")
args = parser.parse_args()
config_dict = vars(args)
return config_dict
if __name__ == "__main__":
cfg = parse_arguments()
main(cfg)