-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenetic.py
97 lines (69 loc) · 2.26 KB
/
genetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import pandas as pd
import random
def selection(population,Np):
df = pd.DataFrame(population,index = ['Rating','Genome'])
df = df.transpose()
df.index.name = 'Individual'
#print(df)
#sort genomes on basis of genome ratings
df = df.sort_values(by='Rating',ascending = False)
#print('sorted')
#print(df)
#select the genomes of top Np% genomes from dataframe on basis of ratings,
Np_num = int((Np/100) * len(df))
#print(Np_num)
top_Np = df.iloc[:Np_num,1]
#print('Individuals selected for next generation')
#print(top_Np)
#Next we will generate a mating pool i.e make pairs of parents for combining
no_of_pairs = int(len(top_Np)/2)
mating_pool = []
for i in range(0,no_of_pairs,2):
mating_pool.append( [ top_Np[top_Np.index[i]],top_Np[top_Np.index[i+1]] ] )
return mating_pool
def crossover(mating_pool):
new_generation = []
for pair in mating_pool:
#print(pair)
parent1 = pair[0]
parent2 = pair[1]
#print('parent 1: ',parent1)
#print('parent 2: ',parent2)
#we consider gene segments of length 4 bits, and perform crossover
#operations between them exchanging the bits patterns i.e say
# we had two genes 1100 and 0011,we split it at the at some random
# point k = 2, and exchnage the bits preceding and following,
#so after crossover it would look like 1111 and 0000
offspring1 = ''
offspring2 = ''
for i in range(0,len(parent1),4):
gene1 = parent1[i:i+4]
gene2 = parent2[i:i+4]
#print(gene1)
#print(gene2)
#print('-----')
k = random.randrange(0,4)
#print('k:',k)
sub_gene_1_1 = gene1[0:k]
sub_gene_1_2 = gene1[k:]
sub_gene_2_1 = gene2[0:k]
sub_gene_2_2 = gene2[k:]
new_gene_1 = sub_gene_1_1 + sub_gene_2_2
new_gene_2 = sub_gene_2_1 + sub_gene_1_2
#print('####')
#print('new gene1: ',new_gene_1)
#print('new gene2: ',new_gene_2)
#print('')
offspring1 = offspring1 + new_gene_1
offspring2 = offspring2 + new_gene_2
new_generation.append(offspring1)
new_generation.append(offspring2)
return new_generation
#print('new offspring1: ',offspring1)
#print('new offspring2: ',offspring2)
if __name__ == '__main__':
parent1 = '1111000001011000'
parent2 = '1110101001011011'
mating_pool =[[parent1,parent2]]
new_generation = crossover(mating_pool)
print(new_generation)