diff --git a/Helmet_Detection/readme.md b/Helmet_Detection/readme.md index 47b70e6..141d351 100644 --- a/Helmet_Detection/readme.md +++ b/Helmet_Detection/readme.md @@ -30,6 +30,8 @@ Install the required libraries using: ```bash pip install tensorflow numpy matplotlib lxml +``` + # Data Preparation @@ -45,7 +47,7 @@ The annotations are in XML format. The `parse_annotation` function extracts obje ```python def parse_annotation(annotation_file): # Parsing logic - +``` # Loading Data @@ -54,7 +56,7 @@ The `load_data` function loads and preprocesses the images and annotations for t ```python def load_data(annotations_dir, images_dir): # Loading and preprocessing logic - +``` # Model Architecture @@ -63,7 +65,7 @@ The model is based on Faster R-CNN with a ResNet50 backbone, pre-trained on Imag ```python def create_faster_rcnn(): # Model creation logic - +``` # Training @@ -76,7 +78,7 @@ The model is compiled and trained using the following parameters: ```python model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2) - +``` # Evaluation @@ -88,14 +90,14 @@ The model can be evaluated on a separate test set. Here, we demonstrate how to l ```python def preprocess_image(image_path): # Preprocessing logic - +``` ## Interpret Predictions ```python def interpret_prediction(prediction, threshold=0.6): # Interpretation logic - +``` # Usage To use the model for predicting helmet presence on new images, follow these steps: @@ -103,17 +105,17 @@ To use the model for predicting helmet presence on new images, follow these step ## Load the saved model: ```python loaded_model = tf.keras.models.load_model("/content/drive/MyDrive/helmet_detection_model.h5") - +``` ## Make Predictions: ```python prediction = predict_image(image_path, loaded_model) result = interpret_prediction(prediction[0][0]) - +``` ## Display Image with Prediction: ```python display_image_with_prediction(image_path, result) - +``` # Result and Accuracy