-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
78 lines (59 loc) · 2.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
from typing import Optional, Tuple
import tensorflow as tf
import tensorflowjs as tfjs
from tensorflow.keras.models import Model
from tensorflow.keras.applications import mobilenet_v2
from tensorflow.keras.layers import Conv2D, Dense, Dropout
from tensorflow.keras.layers import GlobalAveragePooling2D, BatchNormalization, Concatenate
def generate_model(param: str, shape: Tuple[int, int]):
"""
Handle function to instantiate the model.
:param param: The path of the saved model's weights
:param shape: Shape of the desired input.
:return: TF model of the Face Classiier
"""
img_height, img_width = shape
pretrain_net = mobilenet_v2.MobileNetV2(input_shape = (img_width, img_height, 3),
include_top = False,
weights = None)
# Adding extra layer for our problem
x = pretrain_net.output
x = Conv2D(32, (3, 3), activation='relu')(x)
x = Dropout(rate=0.2, name='extra_dropout1')(x)
x = GlobalAveragePooling2D()(x)
# x = Dense(units=128, activation='relu', name='extra_fc1')(x)
# x = Dropout(rate=0.2, name='extra_dropout1')(x)
x = Dense(1, activation='sigmoid', name='classifier')(x)
model = Model(inputs=pretrain_net.input, outputs=x, name='mobilenetv2_spoof')
model.load_weights(param)
model.trainable = False # Freeze all the layer (inference only)
print(f"Loading weights from: '{param}'")
return model
class SaveModel:
def __init__(self, model, savedir: str):
if not os.path.isdir(savedir):
os.makedirs(savedir)
self.model = model
self.savedir = savedir
def to_savedmodel(self, savename: str, version: int = 1):
savepath = os.path.join(self.savedir, savename, str(version))
# Saving model as SavedModel format
tf.saved_model.save(self.model, savepath)
# Printing the output nodes name (useful for converting into TensorFlowJS format
output_nodes_name = self.model.output_names[0]
print(f"Output node names: {output_nodes_name}")
def to_tfjs(self, savename: str):
savepath = os.path.join(self.savedir, savename)
# Saving model as tfjs format
tfjs.converters.save_keras_model(self.model, savepath)
if __name__ == "__main__":
params = "./pretrain/classifier/classifier.hdf5"
savedir = os.path.dirname(params)
input_shape = (224, 224)
model = generate_model(params, shape=input_shape)
saving = SaveModel(model, savedir=savedir) # Instantiate the saving object
# Saving to other format
savename = "mobilenet-spoof"
saving.to_tfjs(savename) # save model to TFJS format
print(f"Finished saving on {savedir}!")