-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathj_mam_mm4_fca_ke_tce.R
125 lines (89 loc) · 3.26 KB
/
j_mam_mm4_fca_ke_tce.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
######
# Combine ncal sets of calibrated GCM forecasts
i_files=c("g5_ppn_ke_jan_MAM2020_etprobs.txt",
"ec_ppn_ke_jan_MAM2020_etprobs.txt",
"g5_ppn_ke_jan_MAM2020_ctprobs.txt",
"ec_ppn_ke_jan_MAM2020_ctprobs.txt")
num_models = 4.0
mmw=c(1.0,1.0,1.0,1.0)
calw=0.5
o_file = "mm4_ppn_ke_jan_MAM2020_tprobs.txt"
# IMPORTANT 3 INPUT FILES MUST BE ON SAME GRID
year1=2020 # first year of forecast dataset and analysis
year2=2020 # last year of forecast dataset and analysis
ny=year2-year1+1
fc_file = i_files[1]
# READ HEADER FROM FIRST FILE AND EXTRACT NO Longs and lats
stopifnot(file.exists(fc_file))
lines_fc = readLines(fc_file)
date_lines_fc = grep(pattern='[0-9]{4}-[0-9]{2}-[0-9]{2}', lines_fc)
line3=strsplit(lines_fc[date_lines_fc[1]],split=",")
vc5 = line3[[1]][5]
vc6 = line3[[1]][6]
#
# vc5 is " cpt:nrow=60" from which we want to extract the number 60. We use
# strsplit to split the string along the '=', take the second element, and
# convert to numeric. We do the same to extract the number of columns from vc6
irows = as.numeric(strsplit(vc5, '=')[[1]][2])
icols = as.numeric(strsplit(vc6, '=')[[1]][2])
p_above = array(0, dim=c(irows,icols,ny))
p_below = array(0, dim=c(irows,icols,ny))
# Loop through all the years , store probs and obs category in same size numeric vectors
for (year in year1:year2) {
print(year)
for (mdl in 1:num_models) {
fc_file = i_files[mdl]
if (mdl>2) mw=(1.0-calw)*2 else mw=calw*2
mw=mw*mmw[mdl]
blw = read.table(fc_file, sep="", skip=(year-year1)*(irows*3+6)+4, nrows=irows, header=FALSE )
b_probs0 = as.matrix(blw)
b_probs = b_probs0[, -1]
lats= b_probs0[,1]
abv = read.table(fc_file, sep="", skip=(year-year1)*(irows*3+6)+irows*2+8, nrows=irows, header=FALSE )
a_probs = as.matrix(abv)
a_probs = a_probs[, -1]
# REPEAT EXTRACTION WITH ABOVE NORMAL PROBS (c=3)
w = (b_probs > -0.05) & (a_probs > -0.05)
p_below[,,year-year1+1] = p_below[,,year-year1+1] + b_probs*mw
p_above[,,year-year1+1] = p_above[,,year-year1+1] + a_probs*mw
}
}
p_below = p_below/ num_models
p_above = p_above/ num_models
# Save combined file
l_out = lines_fc[1:2]
l=3
for (year in year1:year2) {
l_out = c(l_out,lines_fc[l] )
l_out = c(l_out,lines_fc[l+1] )
l=l+2
for (lat1 in 1:irows) {
h3= paste(p_below[lat1,,year-year1+1],collapse=" ")
h3= paste(lats[lat1], h3)
l_out = c(l_out,h3)
}
l=l+ irows
l_out = c(l_out,lines_fc[l] )
l_out = c(l_out,lines_fc[l+1] )
l=l+2
for (lat1 in 1:irows) {
px = p_below[lat1,,year-year1+1]+p_above[lat1,,year-year1+1]
p_normal=(100-px)*(px>0) - 1.0*(px<0)
h3= paste(p_normal,collapse=" ")
h3= paste(lats[lat1], h3)
l_out = c(l_out,h3)
}
l=l+ irows
l_out = c(l_out,lines_fc[l] )
l_out = c(l_out,lines_fc[l+1] )
l=l+2
for (lat1 in 1:irows) {
h3= paste(p_above[lat1,,year-year1+1],collapse=" ")
h3= paste(lats[lat1], h3)
l_out = c(l_out,h3)
}
l=l+ irows
}
out = file(o_file)
writeLines(l_out,out)
close(out)