From 087749b440b5d9390bad99fa2085c8daf767f707 Mon Sep 17 00:00:00 2001 From: Neil Gatenby <13014710+NeilGatenby@users.noreply.github.com> Date: Thu, 20 Dec 2018 09:12:23 +0000 Subject: [PATCH] Update T_Accord_Math_Optimization_GaussNewton.htm Fixed what I believe to be a error in docs comment --- .../T_Accord_Math_Optimization_GaussNewton.htm | 18 ++++++++++++++---- 1 file changed, 14 insertions(+), 4 deletions(-) diff --git a/docs/html/T_Accord_Math_Optimization_GaussNewton.htm b/docs/html/T_Accord_Math_Optimization_GaussNewton.htm index da041eeb39..16a8f72121 100644 --- a/docs/html/T_Accord_Math_Optimization_GaussNewton.htm +++ b/docs/html/T_Accord_Math_Optimization_GaussNewton.htm @@ -177,7 +177,12 @@

GaussNewton Class

// Initialize to some random values StartValues = new[] { 0.9, 0.2 }, - // Let's assume a quadratic model function: ax² + bx + c + // Find a curve (model function) of the form + // + // rate = \frac{ax}{b + x} + // + // that best fits the data in the least squares sense, with parameters a + // and b to be determined: Function = (w, x) => (w[0] * x[0]) / (w[1] + x[0]), // Derivative in respect to the weights: @@ -216,8 +221,13 @@

GaussNewton Class

' Initialize to some random values .StartValues = {0.9, 0.2} - ' Let's assume a quadratic model function: ax² + bx + c - .Function = Function(w, x) w(0) * x(0) / (w(1) + x(0)) + ' Find a curve (model function) of the form + ' + ' rate = \frac{ax}{b + x} + ' + ' that best fits the data in the least squares sense, with parameters a + ' and b to be determined: + .Function = Function(w, x) w(0) * x(0) / (w(1) + x(0)) ' Derivative in respect to the weights .Gradient = Sub(w, x, r) @@ -299,4 +309,4 @@

GaussNewton Class

HT_mailLink.innerHTML = HT_mailLinkText; - \ No newline at end of file +