-
Notifications
You must be signed in to change notification settings - Fork 0
/
weyl-metric-calculations.tex
395 lines (315 loc) · 15 KB
/
weyl-metric-calculations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
\RequirePackage[l2tabu, orthodox]{nag}
\documentclass{article}
\usepackage{mathptmx}
\usepackage[T1]{fontenc}
\usepackage[latin9]{inputenc}
\usepackage{microtype}
\usepackage{calc}
\usepackage{siunitx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{subdepth}
\usepackage{cite}
\usepackage{url}
\usepackage{notoccite}
\usepackage{nag}
\usepackage[letterpaper]{geometry}
\usepackage{hyperref}
\hypersetup{
% bookmarks=true, % show bookmarks bar?
% unicode=false, % non-Latin characters in Acrobat’s bookmarks
% pdftoolbar=true, % show Acrobat’s toolbar?
% pdfmenubar=true, % show Acrobat’s menu?
% pdffitwindow=false, % window fit to page when opened
% pdfstartview={FitH}, % fits the width of the page to the window
pdftitle={Detailed calculations for the Weyl metric}, % title
pdfauthor={Adam Getchell}, % author
pdfsubject={Causal Dynamical Triangulations}, % subject of the document
% pdfcreator={Creator}, % creator of the document
% pdfproducer={Producer}, % producer of the document
pdfkeywords={cdt quantum gravity}, % list of keywords
% pdfnewwindow=true, % links in new window
colorlinks=true, % false: boxed links; true: colored links, false is default
linkcolor=blue, % color of internal links, red is default
citecolor=red, % color of links to bibliography, 'green' is default
% filecolor=magenta, % color of file links
% urlcolor=violet % color of external links, cyan is default
}
\usepackage{cleveref}
\crefname{equation}{equation}{equations}
\title{Detailed calculations for the Weyl metric}
\author{\textbf{Adam Getchell}\footnote{\href{mailto:[email protected]}{[email protected]}}\\\textit{Department of Physics, University of California, Davis, CA, 95616}}
\date{\today}
\begin{document}
\maketitle
\tableofcontents
\section{Vacuum solution to the Weyl metric}
Starting from the cylindrically symmetric (Weyl) vacuum metric \cite{synge_relativity}:
\begin{equation}
ds^{2}=e^{2\lambda}dt^{2}-e^{2\left(\nu-\lambda\right)}\left(dr^{2}+dz^{2}\right)-r^{2}e^{-2\lambda}d\phi^{2}
\label{eq:weyl-vacuum-metric}
\end{equation}
\begin{equation}
g_{\mu\nu}=\left(\begin{array}{cccc}
e^{2\lambda} & 0 & 0 & 0\\
0 & -e^{2\left(\nu-\lambda\right)} & 0 & 0\\
0 & 0 & -e^{2\left(\nu-\lambda\right)} & 0\\
0 & 0 & 0 & -r^{2}e^{-2\lambda}
\end{array}\right)\label{eq:general-axisymmetric-static-matrix-metric}
\end{equation}
In this coordinate basis, the definition of the Christoffel connection is: \cite{carroll2003spacetime}
\begin{equation}
\Gamma_{\mu\nu}^{\lambda}=\frac{1}{2}g^{\lambda\sigma}\left(\partial_{\mu}g_{\nu\sigma}+\partial_{\nu}g_{\sigma\mu}-\partial_{\sigma}g_{\mu\nu}\right)
\end{equation}
The non-zero Christoffel connections are:
\begin{equation}
\begin{aligned}
\Gamma^{t}_{tr}&=\partial_{r}\lambda\\
\Gamma^{t}_{tz}&=\partial_{z}\lambda\\
\Gamma^{r}_{tt}&=e^{4\lambda-2\nu}\partial_{r}\lambda\\
\Gamma^{r}_{rr}&=\partial_{r}\nu-\partial_{r}\lambda\\
\Gamma^{r}_{rz}&=\partial_{z}\nu-\partial_{z}\lambda\\
\Gamma^{r}_{zz}&=\partial_{r}\lambda-\partial_{r}\nu\\
\Gamma^{r}_{\phi\phi}&=re^{-2\nu}\left(r\partial_{r}\lambda-1\right)\\
\Gamma^{z}_{tt}&=e^{4\lambda-2\nu}\partial_{z}\lambda\\
\Gamma^{z}_{rr}&=\partial_{z}\lambda-\partial_{z}\nu\\
\Gamma^{z}_{rz}&=\partial_{r}\nu-\partial_{r}\lambda\\
\Gamma^{z}_{zz}&=\partial_{z}\nu-\partial_{z}\lambda\\
\Gamma^{z}_{\phi\phi}&=r^{2}e^{-2\nu}\partial_{z}\lambda\\
\Gamma^{\phi}_{r\phi}&=\frac{1}{r}-\partial_{r}\lambda\\
\Gamma^{\phi}_{z\phi}&=-\partial_{z}\lambda\\
\end{aligned}
\label{eq:christoffel-connections}
\end{equation}
The components of the Riemann tensor are given by:
\begin{equation}
R_{\sigma\mu\nu}^{\rho}=\partial_{\mu}\Gamma_{\nu\sigma}^{\rho}-\partial_{\nu}\Gamma_{\mu\sigma}^{\rho}+\Gamma_{\mu\lambda}^{\rho}\Gamma_{\nu\sigma}^{\lambda}-\Gamma_{\nu\lambda}^{\rho}\Gamma_{\mu\sigma}^{\lambda}
\end{equation}
Using the properties of the Riemann tensor:
\begin{equation}
\begin{aligned}
R_{\rho\sigma\mu\nu}&=-R_{\rho\sigma\nu\mu}\\
R_{\rho\sigma\mu\nu}&=-R_{\sigma\rho\mu\nu}\\
R_{\rho\sigma\mu\nu}&=R_{\mu\nu\rho\sigma}\\
R_{\rho[\sigma\mu\nu]}&=0\\
\end{aligned}
\end{equation}
The non-zero components of the Riemann tensor are:
\begin{equation}
\begin{aligned}
R^{t}_{rtr}&=-\partial^{2}_{r}\lambda+\left(\partial_{z}\lambda\right)^{2}-2\left(\partial_{r}\lambda\right)^{2}+\partial_{r}\lambda\partial_{r}\nu-\partial_{z}\lambda\partial_{z}\nu\\
R^{t}_{rtz}&=-\partial_{r}\partial_{z}\lambda-3\partial_{r}\lambda\partial_{z}\lambda+\partial_{r}\lambda\partial_{z}\nu+\partial_{r}\nu\partial_{z}\lambda\\
R^{t}_{ztz}&=-\partial^{2}_{z}\lambda-2\left(\partial_{z}\lambda\right)^{2}+\left(\partial_{r}\lambda\right)^{2}-\partial_{r}\lambda\partial_{r}\nu+\partial_{z}\lambda\partial_{z}\nu\\
R^{t}_{\phi t\phi}&=re^{-2\nu}\left(r\left(\partial_{r}\lambda\right)^{2}-\partial_{r}\lambda+r\left(\partial_{z}\lambda\right)^{2}\right)\\
R^{r}_{zrz}&=\partial^{2}_{r}\lambda-\partial^{2}_{r}\nu+\partial^{2}_{z}\lambda-\partial^{2}_{z}\nu\\
R^{z}_{\phi z\phi}&=re^{-2\nu}\left(r\partial^{2}_{z}\lambda-r\partial_{z}\lambda\partial_{z}\nu+r\partial_{r}\lambda\partial_{r}\nu-r\left(\partial_{r}\lambda\right)^{2}+\partial_{r}\lambda-\partial_{r}\nu\right)\\
R^{z}_{\phi\phi r}&=re^{-2\nu}\left(-r\partial_{r}\partial_{z}\lambda+r\partial_{r}\nu\partial_{z}\lambda-r\partial_{r}\lambda\partial_{z}\lambda+r\partial_{r}\lambda\partial_{z}\nu-\partial_{z}\nu\right)\\
R^{\phi}_{r\phi r}&=\partial^{2}_{r}\lambda+\frac{1}{r}\partial_{r}\nu-\partial_{r}\lambda\partial_{r}\nu-\left(\partial_{z}\lambda\right)^{2}+\partial_{z}\lambda\partial_{z}\nu+\frac{1}{r}\partial_{r}\lambda\\
\end{aligned}
\end{equation}
The Ricci tensor is given by:
\begin{equation}
R_{\mu\nu}=R_{\mu\lambda\nu}^{\lambda}
\end{equation}
The non-zero components of the Ricci tensor are:
\begin{equation}
\begin{aligned}
R_{tt}&=\frac{e^{4\lambda-2\nu}}{r}\left(r\partial^{2}_{r}\lambda+r\partial^{2}_{z}\lambda+\partial_{r}\lambda\right)\\
R_{rr}&=\partial^{2}_{r}\lambda-\partial^{2}_{r}\nu+\partial^{2}_{z}\lambda-\partial^{2}_{z}\nu-2\left(\partial_{r}\lambda\right)^{2}+\frac{1}{r}\partial_{r}\lambda+\frac{1}{r}\partial_{r}\nu\\
R_{rz}&=\frac{1}{r}\partial_{z}\nu-2\partial_{r}\lambda\partial_{z}\lambda\\
R_{zz}&=\partial^{2}_{r}\lambda-\partial^{2}_{r}\nu+\partial^{2}_{z}\lambda-\partial^{2}_{z}\nu-2\left(\partial_{z}\lambda\right)^{2}+\frac{1}{r}\partial_{r}\lambda-\frac{1}{r}\partial_{r}\nu\\
R_{\phi\phi}&=re^{-2\nu}\left(r\partial^{2}_{r}\lambda+r\partial^{2}_{z}\lambda+\partial_{r}\lambda\right)
\end{aligned}
\label{eq:ricci-tensor-components}
\end{equation}
The Ricci scalar is defined as:
\begin{equation}
R=R_{\mu}^{\mu}=g^{\mu\nu}R_{\mu\nu}
\end{equation}
Which is:
\begin{equation}
R=2e^{2\left(\lambda-\nu\right)}\left(\partial^{2}_{r}\nu+\partial^{2}_{z}\nu-\partial^{2}_{r}\lambda-\partial^{2}_{z}\lambda+\left(\partial_{r}\lambda\right)^{2}+\left(\partial_{z}\lambda\right)^{2}-\frac{1}{r}\partial_{r}\lambda\right)\label{eq:R}
\end{equation}
Einstein's equation in a vacuum is:
\begin{equation}
\label{eq:einstein-vacuum-equation}
G_{\mu\nu}=0
\end{equation}
Whence Einstein's equation:
\begin{equation}
G_{\mu\nu}\equiv R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi GT_{\mu\nu}
\label{eq:einstein}
\end{equation}
However, we can take a shortcut by using:
\begin{equation}
R_{\mu\nu}=0
\label{eq:vacuum-solutions}
\end{equation}
Since the trace of a zero-valued matrix is identically zero, and thus \Cref{eq:vacuum-solutions} automatically satisfies \Cref{eq:einstein-vacuum-equation}.
Applying \Cref{eq:vacuum-solutions} to \Cref{eq:ricci-tensor-components} gives the following:
\begin{equation}
\partial^{2}_{r}\lambda+\frac{1}{r}\partial_{r}\lambda+\partial^{2}_{z}\lambda=0\label{eq:laplace}
\end{equation}
\begin{equation}
\partial_{r}\nu=r\left(\partial^{2}_{r}\nu+\partial^{2}_{z}\nu+2\left(\partial_{r}\lambda\right)^{2}\right)\label{eq:R_rr=0}
\end{equation}
\begin{equation}
\partial_{z}\nu=2r\partial_{r}\lambda\partial_{z}\lambda\label{eq:nu_z}
\end{equation}
\begin{equation}
\partial^{2}_{r}\nu+\partial^{2}_{z}\nu+\left(\partial_{r}\lambda\right)^{2}+\left(\partial_{z}\lambda\right)^{2}=0\label{eq:R_phiphi=0}
\end{equation}
\Cref{eq:laplace} is the two-dimensional Laplace equation in cylindrical coordinates. That is:
\begin{equation}
\nabla^2\lambda(r,z)=0
\label{eq:laplace-r-z}
\end{equation}
Plugging \Cref{eq:R_phiphi=0} into \Cref{eq:R_rr=0} gives:
\begin{equation}
\partial_{r}\nu=r\left(\left(\partial_{r}\lambda\right)^{2}-\left(\partial_{z}\lambda\right)^{2}\right)\label{eq:nu_r}
\end{equation}
Using \Cref{eq:nu_z,eq:nu_r} we find solutions for $\nu$ are given by:
\begin{equation}
\nu=\int r[\left(\left(\partial_{r}\lambda\right)^{2}-\left(\partial_{z}\lambda\right)^{2}\right)dr+\left(2\partial_{r}\lambda\partial_{z}\lambda\right)dz]\label{eq:nu}
\end{equation}
The solutions must satisfy \Cref{eq:laplace-r-z,eq:nu}. A particular solution corresponding to two objects (given by Curzon in 1924 \cite{curzon1924} ) is:
\begin{equation}
\lambda_0(r,z)=-\frac{\mu_1}{r_1}-\frac{\mu_2}{r_2}
\label{eq:lambda-0}
\end{equation}
\begin{equation}
\label{eq:nu-0}
\nu_0(r,z)=-\frac{1}{2}\frac{\mu_{1}^{2}r^2}{r_{1}^{4}}-\frac{1}{2}\frac{\mu_{2}^{2}r^2}{r_{2}^{4}}+\frac{2\mu_1\mu_2}{(z_1-z_2)^2}\left[\frac{r^2+(z-z_1)(z-z_2)}{r_{1}r_{2}}-1\right]
\end{equation}
Where $z_1$ and $z_2$ correspond to the positions on the z-axis for the two objects, $\mu_1$ and $\mu_2$ are length parameters, and:
\begin{equation}
r_1=\sqrt{r^2+(z-z_1)^2}
\label{eq:r_1}
\end{equation}
\begin{equation}
r_2=\sqrt{r^2+(z-z_2)^2}
\label{eq:r_2}
\end{equation}
Just as a final check, plugging \Cref{eq:laplace,eq:R_phiphi=0} into \Cref{eq:R} gives $R=0$, which shows that our solutions are consistent with our assumptions.
By construction, these solutions only apply to empty space, and so must exclude the two objects at $z_1$ and $z_2$. In addition, as noted by Synge \cite{synge_relativity}, the z axis between the two objects must also be excluded due to violation of elementary flatness. We will examine this in the next section.
\section{Curvature from Parallel Transport}
Consider parallel transport of a vector $V$ about the $z$-axis in
the $\hat{\phi}$ direction. The equation for parallel transport is generally given by:
\begin{equation}
\begin{array}{rcl} \frac{D}{d\lambda}=\frac{dx^{\mu}}{d\lambda}\nabla_{\mu}=0 & \mbox{along} & x^{\mu}\left(\lambda\right)
\end{array}
\end{equation}
That is, the directional covariant derivative is equal to zero along
the curve $x^{\mu}$ parameterized by $\lambda$. For a vector this can
be simply written as:
\begin{equation}
\label{eq:x-par-xport}
\nabla_\mu V^{\nu}=\partial_\mu V^\nu+\Gamma^\nu_{\mu\lambda} V^\lambda=0
\end{equation}
Starting with parallel transport along $\hat{e}_{\phi}$, \Cref{eq:x-par-xport} along with the relevant Christoffel symbols $\Gamma^{r}_{\phi\phi}$, $\Gamma^{z}_{\phi\phi}$, $\Gamma^{\phi}_{\phi r}$, and $\Gamma^{\phi}_{\phi z}$ gives:
\begin{equation}
\begin{aligned}
\partial_{\phi}V^{r}+\Gamma^{r}_{\phi\phi}V^{\phi}&=0\\
\partial_{\phi}V^{z}+\Gamma^{z}_{\phi\phi}V^{\phi}&=0\\
\partial_{\phi}V^{\phi}+\Gamma^{\phi}_{\phi r}V^{r}+\Gamma^{\phi}_{\phi z}V^{z}&=0\\
\end{aligned}
\end{equation}
Plugging in the values from \Cref{eq:christoffel-connections}, our equations are:
\begin{equation}
\partial_{\phi}V^{r}+\left(re^{-2\nu}\left(r\partial_{r}\lambda-1\right)\right)V^{\phi}=0\label{eq:V-r-phi}
\end{equation}
\begin{equation}
\label{eq:V_z-V_phi}
\partial_{\phi}V^{z}+\left(r^{2}e^{-2\nu}\partial_{z}\lambda\right)V^{\phi}=0
\end{equation}
\begin{equation}
\partial_{\phi}V^{\phi}+\left(\frac{1}{r}-\partial_{r}\lambda\right)V^{r}-\partial_{z}\lambda V^{z}=0\label{eq:V-phi-r-z}
\end{equation}
Differentiating \Cref{eq:V-phi-r-z} with respect to $\phi$ and plugging it into \Cref{eq:V-r-phi} gives:
\begin{equation}
\partial^{2}_{\phi}V^{\phi}-\partial_z\lambda\partial_{\phi}V^z+r^{2}e^{-2\nu}\left(\partial_r\lambda-\frac{1}{r}\right)^2V^{\phi}=0
\end{equation}
Plugging in the expression for $\partial_{\phi}V^z$ from
\Cref{eq:V_z-V_phi} and letting
\begin{equation}
\label{eq:def-chi}
\chi=re^{-\nu}\sqrt{\left(\partial_z\lambda\right)^2+\left(\frac{1}{r}-\partial_r\lambda\right)^2}
\end{equation}
We have the simple differential equation:
\begin{equation}
\partial^2_\phi V^\phi+\chi^2 V^\phi=0
\end{equation}
For which the solution is:
\begin{equation}
V^{\phi}=A\sin\chi\phi+B\cos\chi\phi
\end{equation}
Therefore, integrating \Cref{eq:V-r-phi} with respect to $\phi$ we get:
\begin{equation}
V^{r}=\frac{r^2e^{-2\nu}(\partial_r\lambda-\frac{1}{r})}{\chi}\left(A\cos\chi\phi-B\sin\chi\phi\right)
\end{equation}
And from \Cref{eq:V_z-V_phi}:
\begin{equation}
V^{z}=\frac{r^2 e^{-2\nu}\partial_z\lambda}{\chi}\left(A\cos\chi\phi-B\sin\chi\phi\right)
\end{equation}
So our general vector is then:
\begin{equation}
\label{eq:V-from-par-transport}
\begin{split}
V=\frac{r^2e^{-2\nu}(\partial_r\lambda-\frac{1}{r})}{\chi}\left(A\cos\chi\phi-B\sin\chi\phi\right)\hat{e}_{r} \\
+\frac{r^2 e^{-2\nu}\partial_z\lambda}{\chi}\left(A\cos\chi\phi-B\sin\chi\phi\right)\hat{e}_{z} \\
+\left(A\sin\chi\phi+B\cos\chi\phi\right)\hat{e}_{\phi}
\end{split}
\end{equation}
Normalizing $V(\phi=0)$:
\begin{equation}
\label{eq:inner-product}
g_{\mu\nu}V^{\mu}V^{\nu}=1
\end{equation}
We obtain the condition that:
\begin{equation}
A^2+B^2=r^{-2}e^{2\lambda}
\end{equation}
For simplicity, we choose $A^2=r^{-2}e^{2\lambda}$ and $B^2=0$.
Now, when we parallel transport $V$ around to $\phi=2\pi$ there will be an angle between $V(\phi=0)$ and $V(\phi=2\pi)$ given by the definition of the scalar product:
\begin{equation}
\cos(\beta)=\frac{g_{\mu\nu}V^{\mu}(0)V^{\nu}(2\pi)}{g_{\mu\nu}V^{\mu}(0)V^{\nu}(0)}
\end{equation}
Since we have normalized our vectors, the denominator is equal to 1, and we get the expression that:
\begin{equation}
\cos\beta=\cos(2\pi\chi)
\end{equation}
Where $\chi$ is given by \Cref{eq:def-chi}. Hence $\beta=2\pi\chi$. We can now use the definition of the deficit angle:
\begin{equation}
\label{eq:deficit-angle}
\Delta=2\pi-\beta=2\pi(1-\chi)
\end{equation}
To get the curvature $\mathcal{R}$ via:
\begin{equation}
\label{eq:curvature}
\mathcal{R}=\lim_{A\rightarrow 0}\frac{\Delta}{A}
\end{equation}
The area $A$ is defined on the reduced metric:
\begin{equation}
ds^2=e^{2(\nu-\lambda)}dr^2+r^2 e^{-2\lambda}d\phi^2
\end{equation}
Via:
\begin{equation}
\label{eq:area}
A=\int\sqrt{|g|}d^n x=\int_{\phi=0}^{\phi=2\pi}\int_{r=0}^{r=R}\sqrt{r^2 e^{2\nu-4\lambda}}drd\phi=2\pi\int_{r=0}^{r=R}re^{\nu-2\lambda}dr
\end{equation}
Plugging \Cref{eq:nu-0,eq:lambda-0} into \Cref{eq:area} gives:
\begin{equation}
\label{eq:area-solved}
A=
\end{equation}
And thus the curvature is:
\begin{equation}
\label{eq:curvature-solved}
\mathcal{R}=
\end{equation}
From the definition of the curvature in \Cref{eq:R} we can obtain the Ricci tensor, and hence the Einstein tensor. Then reading off the value of $G_{zz}$ we obtain the desired $T_{zz}$.
\bibliographystyle{ieeetr}
\bibliography{newtonian-derivation-cdt-v2}
\end{document}
% LocalWords: xport