-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdispersion.py
161 lines (142 loc) · 6.2 KB
/
dispersion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
__author__ = "Johann Cohen Tanugi, Andrea Chiappo"
__email__ = "[email protected]"
#
# This module contains the class to compute the stellar line-of-sight
# velocity dispersion sigma2_los(R), evaluated at the projected radial
# distance R from the center of the system, as given by Jeans equation
#
import numpy as np
from sys import float_info
from scipy.integrate import quad
from profiles import DMProfile, StellarProfile, AnisotropyKernel
class SphericalJeansDispersion(object):
"""
Class to evaluate the stellar line-of-sight velocity dispersion
predicted by Jeans equation
"""
def __init__(self, dm, stellar, anisotropy, dwarf_props, **kwargs):
"""
To build an istance, you must provide
- dm : istance of StellarProfile class
describing the Dark Matter component of the system
- stellar : istance of StellarProfile class
describing the stellar component of the system
- anisotropy : istance of AnisotropyKernel class
describing the stellar velocity anisotropy
- dwarf_props : dictionary containing information to compute the J-factor
the keys must be:
> 'D' : distance to the center of the system
> 'rt' : tidal radius of the system
> 'theta' : aperture of the integration angle to calculate J
> 'with_errs' : (bool) option to return errors on J
"""
if isinstance(dm, DMProfile):
self.dm = dm
elif isinstance(dm, str):
self.dm = build_profile(dm,**kwargs)
if isinstance(stellar, StellarProfile):
self.stellar = stellar
elif isinstance(stellar, str):
self.stellar = build_profile(stellar,**kwargs)
if isinstance(anisotropy, AnisotropyKernel):
self.kernel = anisotropy
elif isinstance(anisotropy, str):
self.kernel = build_kernel(anisotropy,**kwargs)
G = 4.302e-6
self.dwarf_props = dwarf_props
self.cst = 2*G
self.params = {'J':18} #dummy value
setattr(self, 'J', 18)
self._synch()
def _synch(self):
for par in self.dm.params:
self.params['dm_'+par] = self.dm.__dict__[par]
for par in self.stellar.params:
self.params['st_'+par] = self.stellar.__dict__[par]
for par in self.kernel.params:
self.params['ker_'+par] = self.kernel.__dict__[par]
def setparams(self, name, value):
"""
function to update the values of the parameters
entering the various profiles (stellar, dark matter, anisotropy)
input:
- name : (full) parameter name
- value : new parameter value
output:
(no returned value)
"""
if name.split('dm_')[-1] in self.dm.__dict__:
setattr(self.dm, name.split('dm_')[-1], value)
if name.split('st_')[-1] in self.stellar.__dict__:
setattr(self.stellar, name.split('st_')[-1], value)
if name.split('ker_')[-1] in self.kernel.__dict__:
setattr(self.kernel, name.split('ker_')[-1], value)
if name == 'J':
setattr(self, name, value)
self.params[name] = value
self._synch()
def integrand(self, s, R, **kwargs):
"""
integrand of the stellar velocity dispersion
as given by Jeans equation
input:
- s : integration variable
- R : stellar projected radial distance
output:
integrand value
"""
r0 = kwargs['r0'] if 'r0' in kwargs else self.dm.r0
rh = kwargs['rh'] if 'rh' in kwargs else self.stellar.rh
val = self.stellar.density(s/rh) * self.dm.mass(s/r0) * self.kernel(s, R) / s
return val
def sigma_integral(self, rr, epsrel=1.e-8, epsabs=1.e-8):
"""
function to evaluate the integral of the stellar velocity dispersion
as given by Jeans equation
input:
- r : radial distance coordinate from center of the system
output:
- result of integration (error omitted)
"""
res = quad(self.integrand, rr, np.inf, args=(rr,),\
epsabs=epsabs, epsrel=epsrel)
if res[0]/res[1] < 10 and res[1]<1:
#find the scale of the error and force epsrel and epsabs to
#aim for one order of magnitude smaller error
eexp = ("%e"%res[1]).split("e-")[1]
neweps = eval("1.e-%d"%(int(eexp)+1))
res = quad(self.integrand, rr, np.inf, args=(rr,),\
epsabs=neweps, epsrel=neweps, limit=1000)
return res[0]
def compute(self, R):
"""
function to evaluate the integral entering
the velocity dispersion given by Jeans equation and
the J-factor of the dark matter distribution
input:
- R : project radial distance from center of the system
output:
- sigma_los(R) : stellar line-of-sight velocity dispersion
"""
if any([getattr(self.dm,par)<0 for par in self.dm.params]):
return float_info.max
else:
Jreduced = self.dm.cached_Jreduced( **self.dwarf_props )
if 'with_errs' in self.dwarf_props and\
self.dwarf_props['with_errs']==True:
Jred = Jreduced[0]
Jerr = Jreduced[1]
else:
Jred = Jreduced
if np.isscalar(R):
integral = self.sigma_integral(R)
sigma2 = integral / self.stellar.surface_brightness(R) / np.sqrt(Jred)
else:
sigma2 = np.zeros_like(R)
for i,rr in enumerate(R):
eps = 1.e-8
integral = self.sigma_integral(rr, epsrel=eps,epsabs=eps)
I_of_R = self.stellar.surface_brightness(rr)
sigma2[i] = integral / I_of_R / np.sqrt(Jred)
cst = self.cst / np.sqrt(self.dm.Jcst())
return cst * np.power(10, self.J/2.) * sigma2