-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
81 lines (70 loc) · 3.14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class Actor(nn.Module):
def __init__(self, state_size, action_size, fc1=256, fc2=128, leak=0.01, seed=0):
""" Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
hidden_size (int): Number of nodes in hidden layers
leak: amount of leakiness in leaky relu
"""
super(Actor, self).__init__()
self.leak = leak
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1)
self.fc2 = nn.Linear(fc1, fc2)
self.fc3 = nn.Linear(fc2, action_size)
self.bn = nn.BatchNorm1d(state_size)
self.reset_parameters()
def reset_parameters(self):
""" Initilaize the weights using He et al (2015) weights """
torch.nn.init.kaiming_normal_(self.fc1.weight.data, a=self.leak, mode='fan_in')
torch.nn.init.kaiming_normal_(self.fc2.weight.data, a=self.leak, mode='fan_in')
torch.nn.init.uniform_(self.fc3.weight.data, -3e-3, 3e-3)
def forward(self, state):
"""Build an actor (policy) network that maps states -> actions."""
state = self.bn(state)
x = F.leaky_relu(self.fc1(state), negative_slope=self.leak)
x = F.leaky_relu(self.fc2(x), negative_slope=self.leak)
x = torch.tanh(self.fc3(x))
return x
class Critic(nn.Module):
def __init__(self, state_size, action_size, fc1=256, fc2=128, fc3=128, leak=0.01, seed=0):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fcs1_units (int): Number of nodes in the first hidden layer
fc2_units (int): Number of nodes in the second hidden layer
hidden_size:
"""
super(Critic, self).__init__()
self.leak = leak
self.seed = torch.manual_seed(seed)
self.bn = nn.BatchNorm1d(state_size)
self.fcs1 = nn.Linear(state_size, fc1)
self.fc2 = nn.Linear(fc1 + action_size, fc2)
self.fc3 = nn.Linear(fc2, fc3)
self.fc4 = nn.Linear(fc3, 1)
self.reset_parameters()
def reset_parameters(self):
""" Initilaize the weights using He et al (2015) weights """
torch.nn.init.kaiming_normal_(self.fcs1.weight.data, a=self.leak, mode='fan_in')
torch.nn.init.kaiming_normal_(self.fc2.weight.data, a=self.leak, mode='fan_in')
torch.nn.init.uniform_(self.fc3.weight.data, -3e-3, 3e-3)
def forward(self, state, action):
""" Build a critic (value) network that maps (state, action) pairs -> Q-values."""
state = self.bn(state)
x = F.leaky_relu(self.fcs1(state), negative_slope=self.leak)
x = torch.cat((x, action), dim=1)
x = F.leaky_relu(self.fc2(x), negative_slope=self.leak)
x = F.leaky_relu(self.fc3(x), negative_slope=self.leak)
x = self.fc4(x)
return x