-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathmaster.Makefile
229 lines (180 loc) · 9.13 KB
/
master.Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
SHELL = /bin/bash
.DEFAULT_GOAL = show-config
# PIN WARMUP QUERIES TO CACHE (for the QLever UI)
# (c) Algorithms and Data Structures, University of Freiburg
# Originally written by Hannah Bast, 20.02.2021
# This Makefile provides the following targets:
#
# pin: Pin queries to cache, so that all autocompletion queries are fast, even
# when "Clear cache" is clicked in the QLever UI (the results for pinned
# queries will never be removed, unless ... see target clear).
#
# clear: Clear the cache completely (including pinned results). Note that this
# can NOT be activated from the QLever UI.
#
# clear-unpinned: Clear all unpinned results from the cache. This is exactly
# what happens when clicking "Clear cache" in the QLever UI.
#
# show-all-ac-queries: Show the AC queries for subject, predicate, object for
# copy&paste in the QLever UI backend settings.
# This Makefile should be used as follows:
#
# 1. In the directors with the particular index, create a new Makefile
# 2. At the top add: include /local/data/qlever/qlever-indices/Makefile
# (or wherever this Makefile - the master Makefile - resides)
# 3. Redefine API and FREQUENT_PREDICATES (see below) in the local Makefile
# 4. Redefine any of the patterns in the local Makefile
# (the patterns below give a default functionality, which should work
# for any knowledge base, but only using the raw IRIs, and no names,
# aliases, or whatever special data the knowledge base has to offer.
# A prefix that identifies a particular build. This typically consists of a base
# name and optionally further specificataion separated by dots. For example:
# wikidata. Or: wikidata.2021-06-27
DB =
# The base name of the prefix = the part before the first dot. Often, the name
# of the input (ttl) file or of the settings (json) file use only the basename
# and not the full prefix.
DB_BASE = $(firstword $(subst ., ,$(DB)))
# The port of the QLever backend.
PORT =
# The slug used in the URL of the QLever API and the QleverUI API. This is
# typically the basename of the prefix. For example: wikidata. Or: freebase.
SLUG = $(DB_BASE)
# Memory for queries and for the cache (all in GB).
MEMORY_FOR_QUERIES = 30
CACHE_MAX_SIZE_GB = 30
CACHE_MAX_SIZE_GB_SINGLE_ENTRY = 5
CACHE_MAX_NUM_ENTRIES = 1000
# The URL of the QLever backend.
QLEVER_API = https://qlever.cs.uni-freiburg.de/api/$(SLUG)
# The URL of the QLever UI instance ... TODO: it's confusing that this also has
# /api/ in the name, it actually has nothing to do with the URLs from the QLever
# backends (which are defined in the Apache configuration of QLever).
WARMUP_API = $(subst /api/,/api/warmup/,$(QLEVER_API))
# Admin token
TOKEN = aof4Ad
# Frequent predicates that should be pinned to the cache (can be left empty).
# Separate by space. You can use all the prefixes from PREFIXES (e.g. wdt:P31 if
# PREFIXES defines the prefix for wdt), but you can also write full IRIs. Just
# see how it is used in target pin: below, it's very simple.
FREQUENT_PREDICATES =
FREQUENT_PATTERNS_WITHOUT_ORDER =
# The name of the docker image.
DOCKER_IMAGE = qlever.master
# The name of the docker container. Used for target memory-usage: below.
DOCKER_CONTAINER = qlever.$(DB)
# Configuration for SPARQL+Text.
QLEVER_TOOL_DIR = $(dir $(lastword $(MAKEFILE_LIST)))misc
WITH_TEXT =
TEXT_OPTIONS_INDEX = $(if $(WITH_TEXT),-w $(DB).wordsfile.tsv -d $(DB).docsfile.tsv,)
TEXT_OPTIONS_START = $(if $(WITH_TEXT),-t,)
show-config-default:
@ echo
@ echo "Basic configuration variables:"
@ echo
@ for VAR in DB DB_BASE SLUG CAT_TTL \
PORT QLEVER_API WARMUP_API \
DOCKER_IMAGE DOCKER_CONTAINER \
MEMORY_FOR_QUERIES \
CACHE_MAX_SIZE_GB CACHE_MAX_SIZE_GB_SINGLE_ENTRY CACHE_MAX_NUM_ENTRIES \
TEXT_OPTIONS_INDEX TEXT_OPTIONS_START; do \
printf "%-30s = %s\n" "$$VAR" "$${!VAR}"; done
@ echo
@ printf "All targets: "
@ grep "^[A-Za-z._]\+:" $(lastword $(MAKEFILE_LIST)) | sed 's/://' | paste -sd" "
@ echo
@ echo "make index will do the following (but NOT if an index with that name exists):"
@ echo
@ $(MAKE) -sn index | egrep -v "^(if|fi)"
@ echo
%: %-default
@ true
# Build an index or remove an existing one
CAT_TTL = cat $(DB).ttl
index:
@if ls $(DB).index.* 1> /dev/null 2>&1; then echo -e "\033[31mIndex exists, delete it first with make remove_index, which would execute the following:\033[0m"; echo; make -sn remove_index; echo; else \
time ( docker run -it --rm -v $(shell pwd):/index --entrypoint bash --name qlever.$(DB)-index $(DOCKER_IMAGE) -c "cd /index && $(CAT_TTL) | IndexBuilderMain -F ttl -f - -l -i $(DB) -K $(DB) $(TEXT_OPTIONS_INDEX) -s $(DB_BASE).settings.json | tee $(DB).index-log.txt"; rm -f $(DB)*tmp* ) \
fi
remove_index:
rm -f $(DB).index.* $(DB).vocabulary.* $(DB).prefixes $(DB).meta-data.json $(DB).index-log.txt
# Create wordsfile and docsfile from all literals of the given NT file.
# Using this as input for a SPARQL+Text index build will effectively enable
# keyword search in literals. To understand how, look at the wordsfile and
# docsfile produced. See git:ad-freiburg/qlever/docs/sparql_and_text.md .
text_input_from_nt_literals:
python3 $(QLEVER_TOOL_DIR)/words-and-docs-file-from-nt.py $(DB)
# START, WAIT (until the backend is read to respond), STOP, and view LOG
start:
-docker rm -f $(DOCKER_CONTAINER)
docker run -d --restart=unless-stopped -v $(shell pwd):/index -p $(PORT):7001 -e INDEX_PREFIX=$(DB) -e MEMORY_FOR_QUERIES=$(MEMORY_FOR_QUERIES) -e CACHE_MAX_SIZE_GB=${CACHE_MAX_SIZE_GB} -e CACHE_MAX_SIZE_GB_SINGLE_ENTRY=${CACHE_MAX_SIZE_GB_SINGLE_ENTRY} -e CACHE_MAX_NUM_ENTRIES=${CACHE_MAX_NUM_ENTRIES} --name $(DOCKER_CONTAINER) $(DOCKER_IMAGE) $(TEXT_OPTIONS_START)
wait:
@docker logs -f --tail 10 $(DOCKER_CONTAINER) & PID=$$!; \
while [ $$(curl --silent http://localhost:$(PORT) > /dev/null; echo $$?) != 0 ]; \
do sleep 1; done; kill $$PID
start_and_pin:
$(MAKE) -s start wait pin.remote
stop:
docker stop $(DOCKER_CONTAINER)
log:
docker logs -f --tail 100 $(DOCKER_CONTAINER)
# WARMUP queries. The .local target only works on the machine, where the
# qlever-ui Docker container is running. It has the advantage of being more
# interactive than the WARMUP_API call (which for pin: returns only after all
# warmup queries have been executed and times out if this takes too long, for
# reasons I have not fully understood yet, apparently there is a time out in one
# of the proxies involved).
HTML2ANSI = jq -r '.log|join("\n")' | sed 's|<strong>\(.*\)</strong>|\\033[1m\1\\033[0m|; s|<span style="color: blue">\(.*\)</span>|\\033[34m\1\\033[0m|' | xargs -0 echo -e
pin.remote:
ssh -t galera docker exec -it qlever-ui bash -c \"python manage.py warmup $(SLUG) pin\"
pin.local:
docker exec -it qlever-ui bash -c "python manage.py warmup $(SLUG) pin"
clear.local:
docker exec -it qlever-ui bash -c "python manage.py warmup $(SLUG) clear"
clear_unpinned.local:
docker exec -it qlever-ui bash -c "python manage.py warmup $(SLUG) clear_unpinned"
pin:
@if ! curl -Gsf $(WARMUP_API)/pin?token=$(TOKEN) | $(HTML2ANSI); \
then curl -Gi $(WARMUP_API)/pin?token=$(TOKEN); fi
clear:
@curl -Gs $(WARMUP_API)/clear?token=$(TOKEN) | $(HTML2ANSI)
@# curl -Gs $(QLEVER_API) --data-urlencode "cmd=clearcachecomplete" > /dev/null
clear_unpinned:
@curl -Gsf $(WARMUP_API)/clear_unpinned?token=$(TOKEN) | $(HTML2ANSI)
@# curl -Gs $(QLEVER_API) --data-urlencode "cmd=clearcache" > /dev/null
# STATISTICS on cache, memory, and the number of triples per predicate.
disk_usage:
du -hc $(DB).index.* $(DB).vocabulary.* $(DB).prefixes $(DB).meta-data.json
cachestats:
@curl -Gs $(QLEVER_API) --data-urlencode "cmd=cachestats" \
| sed 's/[{}]//g; s/:/: /g; s/,/ , /g' | numfmt --field=2,5,8,11,14 --grouping && echo
memory_usage:
@echo && docker stats --no-stream --format \
"Memory usage of docker container $(DOCKER_CONTAINER): {{.MemUsage}}" $(DOCKER_CONTAINER)
num_triples:
@echo -e "\033[1mCompute total number of triples by computing the number of triples for each predicate\033[0m"
curl -Gs $(QLEVER_API) --data-urlencode "query=SELECT ?p (COUNT(?p) AS ?count) WHERE { ?x ql:has-predicate ?p } GROUP BY ?p ORDER BY DESC(?count)" --data-urlencode "action=tsv_export" \
| cut -f1 | grep -v "QLever-internal-function" \
> $(DB).predicates.txt
cat $(DB).predicates.txt \
| while read P; do \
$(MAKE) -s clear-unpinned > /dev/null; \
printf "$$P\t" && curl -Gs $(QLEVER_API) --data-urlencode "query=SELECT ?x ?y WHERE { ?x $$P ?y }" --data-urlencode "send=10" \
| grep resultsize | sed 's/[^0-9]//g'; \
done \
| tee $(DB).predicate-counts.tsv | numfmt --field=2 --grouping
cut -f2 $(DB).predicate-counts.tsv | paste -sd+ | bc | numfmt --grouping \
| tee $(DB).num-triples.txt
# SETTINGS
settings:
@curl -Gs $(QLEVER_API) --data-urlencode "cmd=get-settings" \
| sed 's/[{}]//g; s/:/: /g; s/,/ , /g' && echo
BB_FACTOR_SORTED = 100
BB_FACTOR_UNSORTED = 150
set_bb:
@echo -e "\033[1mSet factor for BB FILTER cost estimate to $(BB_FACTOR)\033[0m"
@curl -Gs $(QLEVER_API) \
--data-urlencode "bounding_box_filter_sorted_cost_estimate=$(BB_FACTOR_SORTED)" \
--data-urlencode "bounding_box_filter_unsorted_cost_estimate=$(BB_FACTOR_UNSORTED)" \
> \dev\null
@$(MAKE) -s settings
export