-
Notifications
You must be signed in to change notification settings - Fork 0
/
resolution-revised.aux
247 lines (247 loc) · 29 KB
/
resolution-revised.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\citation{SMTMN2008JCP,MPASatm,Z2014QJRMS,HETAL2016JCLIM,DCMIP16,LetAl2018JAMES}
\citation{PC2008JAS,AW2013JAS,SZ2018JCLIM}
\citation{O1981JAS,WETAL1997MWR,PG2006JAS,JR2016QJRMS}
\citation{W2008TELLUS}
\citation{PS2002CD}
\citation{HETAL2006JC}
\citation{WETAL1995CD}
\newlabel{FirstPage}{{}{1}{}{Doc-Start}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}\protected@file@percent }
\citation{CAM5}
\citation{KW1991JGR,WETAL1995CD,W2008TELLUS,RETAL2013JCLIM,ZetAl2014JCb,HR2017JCLIM}
\citation{KW1991JGR,WETAL1995CD,W2008TELLUS,RETAL2013JCLIM,ZetAl2014JCb,HR2017JCLIM}
\citation{WETAL1995CD,ZetAl2014JCb}
\citation{KW1991JGR}
\citation{WETAL1995CD}
\citation{CAM4}
\citation{HR2017JCLIM}
\citation{J2017JAMES}
\citation{DETALA2016ACP,OETAL2016JAMES}
\citation{RETAL2016CD,HR2018JAMES}
\citation{RETAL2016CD}
\citation{RETAL2016CD}
\citation{L1999JFM,CL2001JGR}
\citation{DETAL1996JAS}
\citation{NG1985JAS,CETAL1999JGR}
\citation{THO2006GRL,SPKS2014JAS}
\citation{RETAL2016CD}
\citation{WETAL1997MWR,PG2006JAS,JR2016QJRMS}
\citation{HR2018JAMES}
\citation{S2011LNCSE}
\citation{HR2018JAMES}
\citation{HR2017JCLIM}
\citation{HR2018JAMES,HETAL2019JAMES}
\citation{PS2002CD,HETAL2006JC,RETAL2016CD,TETAL2018CD}
\citation{KW1991JGR}
\citation{WETAL1995CD}
\citation{W2013QJRMS}
\citation{NH2000ASL}
\citation{AMIP1999}
\citation{KW1991JGR}
\citation{WETAL1995CD}
\citation{W2008TELLUS}
\citation{RETAL2013JCLIM,ZetAl2014JCb,HR2017JCLIM}
\citation{ZetAl2014JCb}
\citation{PS2002CD}
\citation{HETAL2006JC}
\citation{NH2000ASL}
\citation{AMIP1999}
\citation{KW1991JGR}
\citation{WETAL1995CD}
\citation{W2008TELLUS}
\citation{RETAL2013JCLIM,ZetAl2014JCb,HR2017JCLIM}
\citation{ZetAl2014JCb}
\citation{PS2002CD}
\citation{HETAL2006JC}
\newlabel{eq:alpha}{{1}{2}{Introduction}{equation.1.1}{}}
\citation{DetAl2012IJHPCA}
\citation{LTOUNGK2017MWR}
\citation{LetAl2018JAMES}
\citation{TF2010JCP}
\citation{LetAl2018JAMES}
\citation{HL2018MWR}
\citation{HETAL2019JAMES}
\citation{LW2019JAMES}
\citation{GETAL2002JAS,BOG2013JCLIM}
\citation{G1992JFM}
\citation{MG2}
\citation{MAM}
\citation{ZM1995AO}
\citation{RB1992JAS,NRJ2008JC}
\citation{RR2008JC}
\citation{NH2000ASL,MWO2016JAMES}
\citation{NH2000ASL}
\citation{HETAL2019JAMES}
\citation{HETAL2019JAMES}
\citation{W2008TELLUS}
\citation{WO2003QJR,W2013QJRMS,HR2018JAMES}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Bar-graph of the convective (solid) and stratiform (white) climatological precipitation rates in prior CAM/CCM convergence studies. Each window contains a single convergence experiment, with identical x-axis; the approximate grid resolution. Colors indicate the model configuration; January ensemble (black), aqua-planet configurations with SST profiles $QOBS$ (blue) and $CNTL$ (red) in \cite {NH2000ASL} and annual means from an AMIP configuration \citep [green;][]{AMIP1999}. Studies included in this figure are \cite {KW1991JGR} (CCM1), \cite {WETAL1995CD} (CCM2), \cite {W2008TELLUS} (CAM3), \cite {RETAL2013JCLIM,ZetAl2014JCb,HR2017JCLIM} (CAM4), \cite {ZetAl2014JCb} (CAM5) and this study (CAM6). {\color {red}{Two additional studies are included that do no not use the NCAR models, \cite {PS2002CD} (HadAM3) and \cite {HETAL2006JC} (ECHAM5) in order to illustrate similarities in resolution sensitivity across different AGCMs.}} The asterisk (*) indicates that parameters are modified with resolution to reduce the dependence of cloud fraction and top-of-atmosphere radiative balance on resolution.\relax }}{3}{figure.caption.1}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:cam-history}{{1}{3}{Bar-graph of the convective (solid) and stratiform (white) climatological precipitation rates in prior CAM/CCM convergence studies. Each window contains a single convergence experiment, with identical x-axis; the approximate grid resolution. Colors indicate the model configuration; January ensemble (black), aqua-planet configurations with SST profiles $QOBS$ (blue) and $CNTL$ (red) in \cite {NH2000ASL} and annual means from an AMIP configuration \citep [green;][]{AMIP1999}. Studies included in this figure are \cite {KW1991JGR} (CCM1), \cite {WETAL1995CD} (CCM2), \cite {W2008TELLUS} (CAM3), \cite {RETAL2013JCLIM,ZetAl2014JCb,HR2017JCLIM} (CAM4), \cite {ZetAl2014JCb} (CAM5) and this study (CAM6). {\color {red}{Two additional studies are included that do no not use the NCAR models, \cite {PS2002CD} (HadAM3) and \cite {HETAL2006JC} (ECHAM5) in order to illustrate similarities in resolution sensitivity across different AGCMs.}} The asterisk (*) indicates that parameters are modified with resolution to reduce the dependence of cloud fraction and top-of-atmosphere radiative balance on resolution.\relax }{figure.caption.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2}Methods}{3}{section.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Dynamical Core}{3}{subsection.2.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Physical Parameterizations}{3}{subsection.2.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Experimental Design}{3}{subsection.2.3}\protected@file@percent }
\newlabel{sec:ed}{{2.3}{3}{Experimental Design}{subsection.2.3}{}}
\newlabel{eq:dt-scale}{{2}{3}{Experimental Design}{equation.2.2}{}}
\citation{RETAL2016CD}
\citation{HR2018JAMES}
\citation{RETAL2016CD}
\citation{OETAL2016JAMES}
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Experimental design and global mean climatologies. $\Delta x$ refers to the average equatorial grid-spacing.\relax }}{4}{table.caption.2}\protected@file@percent }
\newlabel{tbl:table1}{{1}{4}{Experimental design and global mean climatologies. $\Delta x$ refers to the average equatorial grid-spacing.\relax }{table.caption.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Probability density distribution of the upward vertical pressure velocities $\omega $ computed everywhere in the model from six-hourly output over the entirety of the year-long simulations. (a) Values on their native grid (solid) and values bilinearly remapped to the $ne20$ grid (dotted), (b) values on their native grid, scaled to the $ne120$ resolution using a power law exponent $n=-1$ in equation\nobreakspace {}\ref {eq:alpha}.\relax }}{4}{figure.caption.3}\protected@file@percent }
\newlabel{fig:2pdf}{{2}{4}{Probability density distribution of the upward vertical pressure velocities $\omega $ computed everywhere in the model from six-hourly output over the entirety of the year-long simulations. (a) Values on their native grid (solid) and values bilinearly remapped to the $ne20$ grid (dotted), (b) values on their native grid, scaled to the $ne120$ resolution using a power law exponent $n=-1$ in equation~\ref {eq:alpha}.\relax }{figure.caption.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Components of the climatological, global mean vertical pressure velocity, (a) $\delimiter "426830A f_{u} \delimiter "526930B \delimiter "426830A \omega _{u} \delimiter "526930B $ and (b) $\delimiter "426830A f_{d} \delimiter "526930B \delimiter "426830A \omega _{d} \delimiter "526930B $. Grey crosses are for the 24 member perturbed parameter ensemble.\relax }}{4}{figure.caption.4}\protected@file@percent }
\newlabel{fig:2panel}{{3}{4}{Components of the climatological, global mean vertical pressure velocity, (a) $\langle f_{u} \rangle \langle \omega _{u} \rangle $ and (b) $\langle f_{d} \rangle \langle \omega _{d} \rangle $. Grey crosses are for the 24 member perturbed parameter ensemble.\relax }{figure.caption.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3}Results}{4}{section.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Vertical Velocities and Resolution}{4}{subsection.3.1}\protected@file@percent }
\newlabel{eq:omega}{{3}{4}{Vertical Velocities and Resolution}{equation.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Vertical Velocities and Stratiform Precipitation}{4}{subsection.3.2}\protected@file@percent }
\newlabel{eq:mflux}{{4}{4}{Vertical Velocities and Stratiform Precipitation}{equation.3.4}{}}
\citation{RETAL2016CD}
\citation{OETAL2016JAMES}
\citation{RETAL2016CD}
\citation{OETAL2016JAMES}
\citation{TETAL2018CD}
\citation{ZM1995AO}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Precipitation rates vs. upward moisture flux at the 850 hPa level. Solid lines refer to median stratiform (green), convective (blue) and total (magenta) precipitation rates conditional on bins of the moisture flux, and shaded regions refer to the conditional interquartile ranges.\relax }}{5}{figure.caption.5}\protected@file@percent }
\newlabel{fig:mflux}{{4}{5}{Precipitation rates vs. upward moisture flux at the 850 hPa level. Solid lines refer to median stratiform (green), convective (blue) and total (magenta) precipitation rates conditional on bins of the moisture flux, and shaded regions refer to the conditional interquartile ranges.\relax }{figure.caption.5}{}}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Fractional contribution of latitude bands $\pm 10^{\circ }$ and $\pm 15^{\circ }$ to changes in global mean stratiform and parameterized convective precipitation with resolution. The grid headers refer to differences with respect to the next lowest grid resolution, e.g., $ne30 = ne30-ne20$, $ne40=ne40-ne30$, etc... All differences are computed after conservative remapping to a common $ne20$ grid.\relax }}{5}{table.caption.6}\protected@file@percent }
\newlabel{tbl:table2}{{2}{5}{Fractional contribution of latitude bands $\pm 10^{\circ }$ and $\pm 15^{\circ }$ to changes in global mean stratiform and parameterized convective precipitation with resolution. The grid headers refer to differences with respect to the next lowest grid resolution, e.g., $ne30 = ne30-ne20$, $ne40=ne40-ne30$, etc... All differences are computed after conservative remapping to a common $ne20$ grid.\relax }{table.caption.6}{}}
\newlabel{eq:pdecomp}{{5}{5}{Vertical Velocities and Stratiform Precipitation}{equation.3.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Vertical Velocities and Deep Convective Precipitation}{5}{subsection.3.3}\protected@file@percent }
\citation{WILKSBOOK}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Decomposition of the climatological stratiform precipitation rates, averaged over the $\pm 15^{\circ }$ latitude band into $\omega _{850}$ and $q_{850}$ environmental conditions. Left column shows the time mean magnitude term $M\left ( \omega _i , q_j \right )$ and the right column is the magnitude term multiplied by the space-time frequency term $f\left ( \omega _i , q_j \right ) M\left ( \omega _i , q_j \right )$. Integrals over $f M$ gives the climatological, area averaged stratiform precipitation rate. Panel labels denote the grid resolution of the model run. {\color {red}{See SFigure\nobreakspace {}2 for all the unmasked values of $M_s$, and the raw $f_s$ field.}}\relax }}{6}{figure.caption.7}\protected@file@percent }
\newlabel{fig:pdecomp}{{5}{6}{Decomposition of the climatological stratiform precipitation rates, averaged over the $\pm 15^{\circ }$ latitude band into $\omega _{850}$ and $q_{850}$ environmental conditions. Left column shows the time mean magnitude term $M\left ( \omega _i , q_j \right )$ and the right column is the magnitude term multiplied by the space-time frequency term $f\left ( \omega _i , q_j \right ) M\left ( \omega _i , q_j \right )$. Integrals over $f M$ gives the climatological, area averaged stratiform precipitation rate. Panel labels denote the grid resolution of the model run. {\color {red}{See SFigure~2 for all the unmasked values of $M_s$, and the raw $f_s$ field.}}\relax }{figure.caption.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Scatter plot of global mean, climatological $\delimiter "426830A f_{d} \delimiter "526930B \delimiter "426830A \omega _{d} \delimiter "526930B $ and $FREQZM$, and the fitted linear regression which has a Pearson's R-value = 0.99, using all 27 simulations. Grey crosses are for the 24 member perturbed parameter ensemble runs.\relax }}{6}{figure.caption.8}\protected@file@percent }
\newlabel{fig:corr}{{6}{6}{Scatter plot of global mean, climatological $\langle f_{d} \rangle \langle \omega _{d} \rangle $ and $FREQZM$, and the fitted linear regression which has a Pearson's R-value = 0.99, using all 27 simulations. Grey crosses are for the 24 member perturbed parameter ensemble runs.\relax }{figure.caption.8}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Zonal mean (a) climatological $\delimiter "426830A f_{d} \delimiter "526930B \delimiter "426830A \omega _{d} \delimiter "526930B $ and (b) climatological $FREQZM$. Zonal mean (c) R-values and (d) the shape parameter $b_1$ in the logistic regression.\relax }}{6}{figure.caption.9}\protected@file@percent }
\newlabel{fig:4zonal}{{7}{6}{Zonal mean (a) climatological $\langle f_{d} \rangle \langle \omega _{d} \rangle $ and (b) climatological $FREQZM$. Zonal mean (c) R-values and (d) the shape parameter $b_1$ in the logistic regression.\relax }{figure.caption.9}{}}
\citation{WILKSBOOK}
\citation{Z2002JGR}
\citation{RB1992JAS}
\newlabel{eq:logreg}{{6}{7}{Vertical Velocities and Deep Convective Precipitation}{equation.3.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.1}Deep Tropics}{7}{subsubsection.3.3.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces (a) Dilute CAPE computed from time mean temperature and moisture profiles of ascending (red), subsiding (blue) and all grid columns (black) in the deep tropics ($\pm 10^{\circ }$ latitude), and (b) space-time weights of ascending (red) and descending (blue) grid columns in the deep tropics. (c) Dilute CAPE computed for ascending/descending grid columns, but using the mean temperature profile for the entire deep tropics, and (d) Dilute CAPE for ascending/descending regions but fixing moisture to the $ne20$ profile. Grey crosses in (a) are dilute CAPE derived from the sum of the products of space-time weights with the dilute CAPE values of ascending/descending grid columns.\relax }}{7}{figure.caption.10}\protected@file@percent }
\newlabel{fig:cape}{{8}{7}{(a) Dilute CAPE computed from time mean temperature and moisture profiles of ascending (red), subsiding (blue) and all grid columns (black) in the deep tropics ($\pm 10^{\circ }$ latitude), and (b) space-time weights of ascending (red) and descending (blue) grid columns in the deep tropics. (c) Dilute CAPE computed for ascending/descending grid columns, but using the mean temperature profile for the entire deep tropics, and (d) Dilute CAPE for ascending/descending regions but fixing moisture to the $ne20$ profile. Grey crosses in (a) are dilute CAPE derived from the sum of the products of space-time weights with the dilute CAPE values of ascending/descending grid columns.\relax }{figure.caption.10}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Time mean (a) temperature and (b) specific humidity profiles of subsiding grid cells in the deep tropics ($\pm 10^{\circ }$ latitude) in the convergence experiment, presented as anomalies from the mean temperature and specific humidity of the entire deep tropics in each simulation.\relax }}{7}{figure.caption.11}\protected@file@percent }
\newlabel{fig:profiles}{{9}{7}{Time mean (a) temperature and (b) specific humidity profiles of subsiding grid cells in the deep tropics ($\pm 10^{\circ }$ latitude) in the convergence experiment, presented as anomalies from the mean temperature and specific humidity of the entire deep tropics in each simulation.\relax }{figure.caption.11}{}}
\citation{SNP2001JAS}
\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces {\color {red}{Climatological change in temperature (left column) and the physics temperature tendencies reflecting the sum of parameterized cloud macrophysics, shallow convection and PBL mixing (CLUBB; right column) between low and high resolution simulations. Panels (a-d) show $ne40 - ne20$ differences for (a,b) ascending grid columns and (c,d) subsiding grid columns, whereas panels (e-h) are the $ne80p - ne40$ differences for (e,f) ascending grid columns and (g,h) subsiding grid columns. Thick black contour is the zero isoline in all panels. For reference, the thick magenta lines in the right column denotes the location of the tropopause in the higher resolution simulations using the lapse-rate WMO definition. Only three of the six simulations are used in this calculation because the CLUBB tendency is not available in the other simulations.}}\relax }}{8}{figure.caption.12}\protected@file@percent }
\newlabel{fig:dzonal-hgt}{{10}{8}{{\color {red}{Climatological change in temperature (left column) and the physics temperature tendencies reflecting the sum of parameterized cloud macrophysics, shallow convection and PBL mixing (CLUBB; right column) between low and high resolution simulations. Panels (a-d) show $ne40 - ne20$ differences for (a,b) ascending grid columns and (c,d) subsiding grid columns, whereas panels (e-h) are the $ne80p - ne40$ differences for (e,f) ascending grid columns and (g,h) subsiding grid columns. Thick black contour is the zero isoline in all panels. For reference, the thick magenta lines in the right column denotes the location of the tropopause in the higher resolution simulations using the lapse-rate WMO definition. Only three of the six simulations are used in this calculation because the CLUBB tendency is not available in the other simulations.}}\relax }{figure.caption.12}{}}
\citation{TETAL2016AGU}
\citation{D2006JCLIM}
\citation{Z2002JGR}
\citation{KW1991JGR,WETAL1995CD,HR2017JCLIM}
\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces (a) Dilute CAPE computed from time mean temperature and moisture profiles of ascending (red), subsiding (blue) and all grid columns (black) in the subtropics ($\pm \left (10^{\circ }-30^{\circ } \right )$ latitude bands), and (b) space-time weights of ascending (red) and descending (blue) grid columns in the subtropics. Grey crosses in (a) are dilute CAPE derived from the sum of the products of space-time weights with the dilute CAPE values of ascending/descending grid columns.\relax }}{9}{figure.caption.13}\protected@file@percent }
\newlabel{fig:cape-subt}{{11}{9}{(a) Dilute CAPE computed from time mean temperature and moisture profiles of ascending (red), subsiding (blue) and all grid columns (black) in the subtropics ($\pm \left (10^{\circ }-30^{\circ } \right )$ latitude bands), and (b) space-time weights of ascending (red) and descending (blue) grid columns in the subtropics. Grey crosses in (a) are dilute CAPE derived from the sum of the products of space-time weights with the dilute CAPE values of ascending/descending grid columns.\relax }{figure.caption.13}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2}Subtropics}{9}{subsubsection.3.3.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces (a,b) Two snapshots of $\omega $ for a longitude-pressure transect at $\sim 18^{\circ }$ latitude in the $ne30$ simulation, overlain by the $0.0075$ kg/m$^2$/s contour of the ZM mass flux delineating the region where the ZM scheme is active. {\color {red}{Magenta contour is the $\omega =0$ Pa/s isoline.}}\relax }}{9}{figure.caption.14}\protected@file@percent }
\newlabel{fig:transect}{{12}{9}{(a,b) Two snapshots of $\omega $ for a longitude-pressure transect at $\sim 18^{\circ }$ latitude in the $ne30$ simulation, overlain by the $0.0075$ kg/m$^2$/s contour of the ZM mass flux delineating the region where the ZM scheme is active. {\color {red}{Magenta contour is the $\omega =0$ Pa/s isoline.}}\relax }{figure.caption.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Climatological zonal mean (a) drizzle fraction and (b) surface latent heat fluxes in the convergence experiment. Drizzle fraction is defined as sum convective precipitation rates $\leq 5$ mm/day divided by the sum of all convective precipitation rates, computed from 6-hourly instantaneous fields over the duration of the simulation.\relax }}{9}{figure.caption.15}\protected@file@percent }
\newlabel{fig:2zonal}{{13}{9}{Climatological zonal mean (a) drizzle fraction and (b) surface latent heat fluxes in the convergence experiment. Drizzle fraction is defined as sum convective precipitation rates $\leq 5$ mm/day divided by the sum of all convective precipitation rates, computed from 6-hourly instantaneous fields over the duration of the simulation.\relax }{figure.caption.15}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4}Discussion and conclusions}{9}{section.4}\protected@file@percent }
\citation{HR2018JAMES}
\citation{HR2018JAMES}
\citation{S2011LNCSE}
\citation{WETAL1997MWR,PG2006JAS,JR2016QJRMS}
\citation{RETAL2016CD}
\citation{RETAL2016CD}
\citation{L1999JFM,CL2001JGR}
\citation{HETAL2019JAMES}
\citation{TETAL2018CD}
\citation{ZM1995AO}
\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces (a) Kinetic energy spectrum and (b) compensated kinetic energy spectrum at the 200 hPa level in the simulations. The diagonal black line in (a) is a reference spectrum $k^{-3}$, with spherical wavenumber $k$. Compensated kinetic energy spectrum refers to the kinetic energy spectrum multiplied by $k^{-\frac {5}{3}}$, so that horizontal lines indicate a spectrum with a $-\frac {5}{3}$ slope. In (b), thick ``caterpillars" are overlain on each spectrum in the $5-10 \Delta x$ range, encompassing the effective resolution of the model.\relax }}{10}{figure.caption.16}\protected@file@percent }
\newlabel{fig:2ke}{{14}{10}{(a) Kinetic energy spectrum and (b) compensated kinetic energy spectrum at the 200 hPa level in the simulations. The diagonal black line in (a) is a reference spectrum $k^{-3}$, with spherical wavenumber $k$. Compensated kinetic energy spectrum refers to the kinetic energy spectrum multiplied by $k^{-\frac {5}{3}}$, so that horizontal lines indicate a spectrum with a $-\frac {5}{3}$ slope. In (b), thick ``caterpillars" are overlain on each spectrum in the $5-10 \Delta x$ range, encompassing the effective resolution of the model.\relax }{figure.caption.16}{}}
\citation{PS2002CD}
\citation{DETALA2016ACP}
\citation{GR1990MWR,N1994ECMWF}
\citation{HR2017JCLIM}
\citation{O1981JAS}
\bibstyle{wileyqj}
\bibdata{bib}
\bibcite{AW2013JAS}{{1}{2013}{{Arakawa and Wu}}{{}}}
\bibcite{BOG2013JCLIM}{{2}{2013}{{Bogenschutz \emph {et~al.}}}{{Bogenschutz, Gettelman, Morrison, Larson, Craig and Schanen}}}
\bibcite{CL2001JGR}{{3}{2001}{{Cho and Lindborg}}{{}}}
\bibcite{CETAL1999JGR}{{4}{1999}{{Cho \emph {et~al.}}}{{Cho, Zhu, Newell, Anderson, Barrick, Gregory, Sachse, Carroll and Albercook}}}
\bibcite{D2006JCLIM}{{5}{2006}{{Dai}}{{}}}
\bibcite{DETAL1996JAS}{{6}{1996}{{Davis \emph {et~al.}}}{{Davis, Marshak, Wiscombe and Cahalan}}}
\bibcite{DetAl2012IJHPCA}{{7}{2012}{{Dennis \emph {et~al.}}}{{Dennis, Edwards, Evans, Guba, Lauritzen, Mirin, St-Cyr, Taylor and Worley}}}
\bibcite{DETALA2016ACP}{{8}{2016}{{Donner \emph {et~al.}}}{{Donner, O'Brien, Rieger, Vogel and Cooke}}}
\bibcite{AMIP1999}{{9}{1999}{{Gates \emph {et~al.}}}{{Gates, Boyle, Covey, Dease, Doutriaux, Drach, Fiorino, Gleckler, Hnilo, Marlais \emph {et~al.}}}}
\bibcite{G1992JFM}{{10}{1992}{{Germano}}{{}}}
\bibcite{MG2}{{11}{2015}{{Gettelman \emph {et~al.}}}{{Gettelman, Morrison, Santos, Bogenschutz and Caldwell}}}
\bibcite{GETAL2002JAS}{{12}{2002}{{Golaz \emph {et~al.}}}{{Golaz, Larson and Cotton}}}
\bibcite{GR1990MWR}{{13}{1990}{{Gregory and Rowntree}}{{}}}
\bibcite{HETAL2006JC}{{14}{2006}{{Hagemann \emph {et~al.}}}{{Hagemann, Arpe and Roeckner}}}
\bibcite{HETAL2016JCLIM}{{15}{2016}{{Harris \emph {et~al.}}}{{Harris, Lin and Tu}}}
\bibcite{HL2018MWR}{{16}{2018}{{Herrington \emph {et~al.}}}{{Herrington, Lauritzen, Taylor, Goldhaber, Eaton, Bacmeister, Reed and Ullrich}}}
\bibcite{HR2018JAMES}{{17}{2018}{{Herrington and Reed}}{{}}}
\bibcite{HETAL2019JAMES}{{18}{2019}{{Herrington \emph {et~al.}}}{{Herrington, Lauritzen, Reed, Goldhaber and Eaton}}}
\bibcite{HR2017JCLIM}{{19}{2017}{{Herrington and Reed}}{{}}}
\bibcite{J2017JAMES}{{20}{2017}{{Jeevanjee}}{{}}}
\bibcite{JR2016QJRMS}{{21}{2016}{{Jeevanjee and Romps}}{{}}}
\bibcite{KW1991JGR}{{22}{1991}{{Kiehl and Williamson}}{{}}}
\bibcite{LetAl2018JAMES}{{23}{2018}{{Lauritzen \emph {et~al.}}}{{Lauritzen, Nair, Herrington, Callaghan, Goldhaber, Dennis, Bacmeister, Eaton, Zarzycki, Taylor, Gettelman, Neale, Dobbins, Reed and Dubos}}}
\bibcite{LTOUNGK2017MWR}{{24}{2017}{{Lauritzen \emph {et~al.}}}{{Lauritzen, Taylor, Overfelt, Ullrich, Nair, Goldhaber and Kelly}}}
\bibcite{LW2019JAMES}{{25}{2019}{{Lauritzen and Williamson}}{{}}}
\bibcite{L1999JFM}{{26}{1999}{{Lindborg}}{{}}}
\bibcite{MAM}{{27}{2012}{{Liu \emph {et~al.}}}{{Liu, Easter, Ghan, Zaveri, Rasch, Shi, Lamarque, Gettelman, Morrison, Vitt \emph {et~al.}}}}
\bibcite{MWO2016JAMES}{{28}{2016}{{Medeiros \emph {et~al.}}}{{Medeiros, Williamson and Olson}}}
\bibcite{NG1985JAS}{{29}{1985}{{Nastrom and Gage}}{{}}}
\bibcite{CAM5}{{30}{2012}{{Neale \emph {et~al.}}}{{Neale, Chen, Gettelman, Lauritzen, Park, Williamson, Conley, Garcia, Kinnison, Lamarque, Marsh, Mills, Smith, Tilmes, Vitt, Cameron-Smith, Collins, Iacono, Easter, Ghan, Liu, Rasch and Taylor}}}
\bibcite{CAM4}{{31}{2010}{{Neale \emph {et~al.}}}{{Neale, Chen, Gettelman, Lauritzen, Park, Williamson, Conley, Garcia, Kinnison, Lamarque, Marsh, Mills, Smith, Tilmes, Vitt, Cameron-Smith, Collins, Iacono, Easter, Ghan, Liu, Rasch and Taylor}}}
\bibcite{NH2000ASL}{{32}{2000}{{Neale and Hoskins}}{{}}}
\bibcite{NRJ2008JC}{{33}{2008}{{Neale \emph {et~al.}}}{{Neale, Richter and Jochum}}}
\bibcite{N1994ECMWF}{{34}{1994}{{Nordeng}}{{}}}
\bibcite{OETAL2016JAMES}{{35}{2016}{{O'Brien \emph {et~al.}}}{{O'Brien, Collins, Kashinath, R\IeC {\"u}bel, Byna, Gu, Krishnan and Ullrich}}}
\bibcite{O1981JAS}{{36}{1981}{{Orlanski}}{{}}}
\bibcite{PG2006JAS}{{37}{2006}{{Pauluis and Garner}}{{}}}
\bibcite{PC2008JAS}{{38}{2008}{{Plant and Craig}}{{}}}
\bibcite{PS2002CD}{{39}{2002}{{Pope and Stratton}}{{}}}
\bibcite{RETAL2016CD}{{40}{2016}{{Rauscher \emph {et~al.}}}{{Rauscher, O\IeC {\textquoteright }Brien, Piani, Coppola, Giorgi, Collins and Lawston}}}
\bibcite{RETAL2013JCLIM}{{41}{2013}{{Rauscher \emph {et~al.}}}{{Rauscher, Ringler, Skamarock and Mirin}}}
\bibcite{RB1992JAS}{{42}{1992}{{Raymond and Blyth}}{{}}}
\bibcite{RR2008JC}{{43}{2008}{{Richter and Rasch}}{{}}}
\bibcite{RETAL2006JC}{{44}{2006}{{Roeckner \emph {et~al.}}}{{Roeckner, Brokopf, Esch, Giorgetta, Hagemann, Kornblueh, Manzini, Schlese and Schulzweida}}}
\bibcite{SMTMN2008JCP}{{45}{2008}{{Satoh \emph {et~al.}}}{{Satoh, Matsuno, Tomita, Miura, Nasuno and Iga}}}
\bibcite{S2011LNCSE}{{46}{2011}{{Skamarock}}{{}}}
\bibcite{MPASatm}{{47}{2012}{{Skamarock \emph {et~al.}}}{{Skamarock, Klemp, Duda, Fowler, Park and Ringler}}}
\bibcite{SPKS2014JAS}{{48}{2014}{{Skamarock \emph {et~al.}}}{{Skamarock, Park, Klemp and Snyder}}}
\bibcite{SNP2001JAS}{{49}{2001}{{Sobel \emph {et~al.}}}{{Sobel, Nilsson and Polvani}}}
\bibcite{SZ2018JCLIM}{{50}{2018}{{Song and Zhang}}{{}}}
\bibcite{THO2006GRL}{{51}{2006}{{Takahashi \emph {et~al.}}}{{Takahashi, Hamilton and Ohfuchi}}}
\bibcite{TF2010JCP}{{52}{2010}{{Taylor and Fournier}}{{}}}
\bibcite{TETAL2016AGU}{{53}{2016}{{Terai \emph {et~al.}}}{{Terai, Caldwell and Klein}}}
\bibcite{TETAL2018CD}{{54}{2018}{{Terai \emph {et~al.}}}{{Terai, Caldwell, Klein, Tang and Branstetter}}}
\bibcite{DCMIP16}{{55}{2017}{{Ullrich \emph {et~al.}}}{{Ullrich, Jablonowski, Kent, Lauritzen, Nair, Reed, Zarzycki, Hall, Dazlich, Heikes, Konor, Randall, Dubos, Meurdesoif, Chen, Harris, K\"uhnlein, Lee, Qaddouri, Girard, Giorgetta, Reinert, Klemp, Park, Skamarock, Miura, Ohno, Yoshida, Walko, Reinecke and Viner}}}
\bibcite{WETAL1997MWR}{{56}{1997}{{Weisman \emph {et~al.}}}{{Weisman, Skamarock and Klemp}}}
\bibcite{WILKSBOOK}{{57}{2011}{{Wilks}}{{}}}
\bibcite{W2008TELLUS}{{58}{2008}{{Williamson}}{{}}}
\bibcite{W2013QJRMS}{{59}{2013}{{Williamson}}{{}}}
\bibcite{WETAL1995CD}{{60}{1995}{{Williamson \emph {et~al.}}}{{Williamson, Kiehl and Hack}}}
\bibcite{WO2003QJR}{{61}{2003}{{Williamson and Olson}}{{}}}
\bibcite{ZetAl2014JCb}{{62}{2014}{{Zarzycki \emph {et~al.}}}{{Zarzycki, Levy, Jablonowski, Overfelt, Taylor and Ullrich}}}
\bibcite{ZM1995AO}{{63}{1995}{{Zhang and McFarlane}}{{}}}
\bibcite{Z2002JGR}{{64}{2002}{{Zhang}}{{}}}
\bibcite{Z2014QJRMS}{{65}{2014}{{Z\IeC {\"a}ngl \emph {et~al.}}}{{Z\IeC {\"a}ngl, Reinert, R\IeC {\'\i }podas and Baldauf}}}
\newlabel{LastPage}{{4}{12}{Acknowledgement}{section*.18}{}}