generated from ashleve/lightning-hydra-template
-
Notifications
You must be signed in to change notification settings - Fork 4
/
eval.py
89 lines (65 loc) · 2.98 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from typing import List, Tuple
import hydra
import pyrootutils
from omegaconf import DictConfig
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
from pytorch_lightning.loggers import LightningLoggerBase
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
# ------------------------------------------------------------------------------------ #
# the setup_root above is equivalent to:
# - adding project root dir to PYTHONPATH
# (so you don't need to force user to install project as a package)
# (necessary before importing any local modules e.g. `from src import utils`)
# - setting up PROJECT_ROOT environment variable
# (which is used as a base for paths in "configs/paths/default.yaml")
# (this way all filepaths are the same no matter where you run the code)
# - loading environment variables from ".env" in root dir
#
# you can remove it if you:
# 1. either install project as a package or move entry files to project root dir
# 2. set `root_dir` to "." in "configs/paths/default.yaml"
#
# more info: https://github.com/ashleve/pyrootutils
# ------------------------------------------------------------------------------------ #
from src import utils
log = utils.get_pylogger(__name__)
@utils.task_wrapper
def evaluate(cfg: DictConfig) -> Tuple[dict, dict]:
"""Evaluates given checkpoint on a datamodule testset.
This method is wrapped in optional @task_wrapper decorator which applies extra utilities
before and after the call.
Args:
cfg (DictConfig): Configuration composed by Hydra.
Returns:
Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects.
"""
assert cfg.ckpt_path
log.info(f"Instantiating datamodule <{cfg.data._target_}>")
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data)
log.info(f"Instantiating model <{cfg.model._target_}>")
model: LightningModule = hydra.utils.instantiate(cfg.model)
log.info("Instantiating loggers...")
logger: List[LightningLoggerBase] = utils.instantiate_loggers(cfg.get("logger"))
log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, logger=logger)
object_dict = {
"cfg": cfg,
"datamodule": datamodule,
"model": model,
"logger": logger,
"trainer": trainer,
}
if logger:
log.info("Logging hyperparameters!")
utils.log_hyperparameters(object_dict)
log.info("Starting testing!")
trainer.test(model=model, datamodule=datamodule, ckpt_path=cfg.ckpt_path)
# for predictions use trainer.predict(...)
# predictions = trainer.predict(model=model, dataloaders=dataloaders, ckpt_path=cfg.ckpt_path)
metric_dict = trainer.callback_metrics
return metric_dict, object_dict
@hydra.main(version_base="1.3", config_path="configs/", config_name="eval.yaml")
def main(cfg: DictConfig) -> None:
evaluate(cfg)
if __name__ == "__main__":
main()