-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.c
2121 lines (1642 loc) · 69.7 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//******************************************************************************//
// INFO //
//******************************************************************************//
// File : main.c //
// Author : Aditya Mall //
// Date : 11/14/2018 //
// Copyright : (c) 2018, Aditya Mall, Mentor: Dr. Jason Losh, //
// The University of Texas at Arlington. //
// Project : LCR Meter using EK-TM4C123GXL Evaluation Board. //
// Target Platform : EK-TM4C123GXL Evaluation Board //
// Target uC : TM4C123GH6PM //
// IDE : Code Composer Studio v7 //
// System Clock : 40 MHz //
// UART Baudrate : 115200 //
// Data Length : 8 Bits //
// Version : 2.4.4 //
// //
// Hardware configuration: //
// - Red LED at PF1 drives an NPN transistor that powers the red LED //
// - Blue LED at PF2 drives an NPN transistor that powers the blue LED //
// - Green LED at PF3 drives an NPN transistor that powers the green LED //
// - Pushbutton at SW1 pulls pin PF4 low (internal pull-up is used) //
// - UART Interface: //
// U0TX (PA1) and U0RX (PA0) are connected to the 2nd controller //
// Configured to 115,200 baud, 8N1 //
// - Project Specific Interface: //
// Measure LR enable connected to PF3 //
// Measure C enable connected to PF2 //
// Measure HIGH_R enable connected to PE3 //
// Measure LOW_R enable connected to PE1 //
// INTEGRATE enable connected to PE2 //
// DUT1 connected to PE5 //
// DUT2 connected to PD2 and PC7 //
// ST7565R Graphics LCD Display Interface: //
// MOSI (SSI2Tx) on PB7 //
// MISO (SSI2Rx) is not used by the LCD display but //
// the pin is used for GPIO for A0 //
// SCLK (SSI2Clk) on PB4 //
// A0 connected to PB6 //
// ~CS connected to PB1 //
// //
//******************************************************************************//
// ATTENTION //
//******************************************************************************//
// //
// This Software was made by Aditya Mall, under the guidance of Dr. Jason Losh, //
// The University of Texas at Arlington. Any UNAUTHORIZED use of this software, //
// without the prior permission and consent of Dr. Jason Losh or any of the, //
// mentioned contributors is a direct violation of Copyright. //
// //
// THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED //
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF //
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. //
// ADITYA MALL OR ANY MENTIONED CONTRIBUTORS SHALL NOT, IN ANY CIRCUMSTANCES, //
// BE LIABLE FOR SPECIAL, INCIDENTAL,OR CONSEQUENTIAL DAMAGES, //
// FOR ANY REASON WHATSOEVER. //
// //
// For more info please contact: [email protected] //
// //
//******************************************************************************//
//*****************************************************************************//
// //
// STANDARD LIBRARIES AND BOARD SPECIFIC HEADER FILES //
// //
//*****************************************************************************//
#include "headers.h"
//*****************************************************************************//
// //
// GLOBAL VARIABLES //
// //
//*****************************************************************************//
// String variables
char string[MAX_SIZE] = {0}; // Array to store the chars received from UART
char new_string[MAX_ARGS][MAX_SIZE] = {0}; // Array to store the words after dividing the string to tokens
// Char category variables
uint8_t a[MAX_ARGS] = {0}; // Array to store the record of Alpha characters
uint8_t n[MAX_ARGS] = {0}; // Array to store the record of Numeric characters
uint8_t s[MAX_ARGS] = {0}; // Array to store the record of Special characters
// Measurement result variables
char str[10]; // Array to store printable measurement value
uint32_t time_constant; // Variable for storing the value of the time constant
float resistance; // Variable for storing the value of resistance measurement result
float capacitance; // Variable for storing the value of resistance measurement result
float inductance; // Variable for storing the value of resistance measurement result
float esr_value; // Variable for storing the value of resistance measurement result
uint16_t raw_DUT1; // Variable for storing the ADC1 FIFO Value
uint16_t raw_DUT2; // Variable for storing the ADC0 FIFO Value
// Argument count variables
uint8_t args_no = 0; // Variable for indexing initial number of arguments
uint8_t args_str = 0; // Variable for indexing the number of characters per argument
uint8_t args_updated; // Variable for indexing final number of arguments, not initialized to zero
uint8_t try_counter = 0; // Variable for indexing the number of counts of measurement
// Structure Variables
State_ty state; // Structure variable declaration for current measurement state
// Test Variables
char ch;
char buff_int[MAX_SIZE] = {0};
//*****************************************************************************//
// //
// HARDWARE INTIALIZATION FUNCTION //
// //
//*****************************************************************************//
void initHw()
{
// Configure System clock as 40Mhz
SYSCTL_RCC_R = SYSCTL_RCC_XTAL_16MHZ | SYSCTL_RCC_OSCSRC_MAIN | SYSCTL_RCC_USESYSDIV | (0x04 << SYSCTL_RCC_SYSDIV_S);
// UART on port A must use APB, default added for clarification
SYSCTL_GPIOHBCTL_R = 0;
// Enable GPIO port A, F, E, C, D and B peripherals
SYSCTL_RCGC2_R |= SYSCTL_RCGC2_GPIOA | SYSCTL_RCGC2_GPIOF| SYSCTL_RCGC2_GPIOE | SYSCTL_RCGC2_GPIOC | SYSCTL_RCGC2_GPIOD | SYSCTL_RCGC2_GPIOB;
// Configure RED led and Pushbutton Pins
GPIO_PORTF_DIR_R &= ~(0x10); // Enable push button as Input
GPIO_PORTF_DIR_R |= 0x02; // Enable PF1 as Output for Red Led
GPIO_PORTF_DEN_R |= 0x12; // Enable Digital for Pushbuttons and Red Led
GPIO_PORTF_PUR_R |= 0x10; // Enable internal pull-up for push button
GPIO_PORTA_DIR_R &= ~(1 << 5) | ~(1 << 6);
GPIO_PORTA_DEN_R |= (1 << 5) | (1 << 6);
GPIO_PORTA_PUR_R |= (1 << 5) | (1 << 6);
GPIO_PORTD_DIR_R &= ~(1 << 1);
GPIO_PORTD_DEN_R |= (1 << 1);
GPIO_PORTD_PUR_R |= (1 << 1);
//(!! ATTENTION!!, please data sheet before configuring PORTC)
GPIO_PORTC_DIR_R &= ~(1 << 5);
GPIO_PORTC_DEN_R |= (1 << 5);
GPIO_PORTC_PUR_R |= (1 << 5);
// Configure UART0 pins
SYSCTL_RCGCUART_R |= SYSCTL_RCGCUART_R0; // Turn-on UART0, leave other uarts in same status
GPIO_PORTA_DEN_R |= 3; // Turn on Digital Operations on PA0 and PA1
GPIO_PORTA_AFSEL_R |= 3; // Select Alternate Functionality on PA0 and PA1
GPIO_PORTA_PCTL_R |= GPIO_PCTL_PA1_U0TX | GPIO_PCTL_PA0_U0RX; // Select UART0 Module
// Configure UART0 to 115200 baud, 8N1 format (must be 3 clocks from clock enable and config writes)
UART0_CTL_R = 0; // turn-off UART0 to allow safe programming
UART0_CC_R |= UART_CC_CS_SYSCLK; // use system clock (40 MHz)
UART0_IBRD_R = 21; // r = 40 MHz / (Nx115.2kHz), set floor(r)=21, where N=16
UART0_FBRD_R = 45; // round(fract(r)*64)=45
UART0_LCRH_R |= UART_LCRH_WLEN_8 | UART_LCRH_FEN; // configure for 8N1 w/ 16-level FIFO
UART0_CTL_R |= UART_CTL_TXE | UART_CTL_RXE | UART_CTL_UARTEN; // enable TX, RX, and module
// Configure ADC on DUT 1 through GPIO registers
SYSCTL_RCGCADC_R |= SYSCTL_RCGCADC_R1; // Turn on clock for ADC Module 0
GPIO_PORTE_DEN_R &= ~(1 << 5); // Turn off digital operation on on PE5
GPIO_PORTE_AFSEL_R |= (1 << 5); // Select Alternate Functionality on PE5
GPIO_PORTE_AMSEL_R |= (1 << 5); // Select Analog Mode on PE5
GPIO_PORTE_PCTL_R |= GPIO_PCTL_PE5_AIN8; // Default Added for clarification
// Configure ADC registers for DUT1
ADC1_ACTSS_R &= ~ADC_ACTSS_ASEN3; // Disable SS3 for safe programming
ADC1_EMUX_R = ADC_EMUX_EM3_PROCESSOR; // Select SS3 bit in ADCPSSI as trigger, default value
ADC1_SSMUX3_R = 8; // Select SS3 MUX to set 1st sample sequence to AIN8
ADC1_SSCTL3_R = ADC_SSCTL3_END0; // Mark first sample as the end
ADC1_ACTSS_R |= ADC_ACTSS_ASEN3; // Enable SS3 for operation
// Configure ADC on DUT 2 through GPIO registers
SYSCTL_RCGCADC_R |= SYSCTL_RCGCADC_R0; // Turn on clock for ADC Module 0
GPIO_PORTD_DEN_R &= ~(1 << 2); // Turn off digital operation on
GPIO_PORTD_DIR_R &= ~(1 << 2); // ??
GPIO_PORTD_AFSEL_R |= (1 << 2); // Select Alternate Functionality on PD2
GPIO_PORTD_AMSEL_R |= (1 << 2); // Select Analog Mode on PD2
GPIO_PORTD_PCTL_R |= GPIO_PCTL_PD2_AIN5; // Default Added for clarification
// Configure ADC registers for DUT2
ADC0_ACTSS_R &= ~ADC_ACTSS_ASEN3; // Disable SS3 for safe programming
ADC0_EMUX_R = ADC_EMUX_EM2_PROCESSOR; // Select SS3 bit in ADCPSSI as trigger, default value
ADC0_SSMUX3_R = 5; // Select SS3 MUX to set 1st sample sequence to AIN5
ADC0_SSCTL3_R = ADC_SSCTL3_END0; // Mark first sample as the end
ADC0_ACTSS_R |= ADC_ACTSS_ASEN3; // Enable SS3 for operation
// TIMER Configure
SYSCTL_RCGCWTIMER_R |= SYSCTL_RCGCWTIMER_R5; // turn-on timer
WTIMER5_CTL_R &= ~TIMER_CTL_TAEN; // turn-off counter before reconfiguring
WTIMER5_CFG_R = 4; // configure as 32-bit counter (A only)
WTIMER5_TAMR_R = TIMER_TAMR_TACMR | TIMER_TAMR_TAMR_CAP | TIMER_TAMR_TACDIR; // configure for edge time mode, count up
WTIMER5_CTL_R = TIMER_CTL_TAEVENT_POS; // measure time from positive edge to positive edge
WTIMER5_TAV_R = 0; // zero counter for first period
// Comparator GPIO configure
SYSCTL_RCGCACMP_R |= 0x01; // Enable comparator clock
GPIO_PORTC_DEN_R &= ~(1 << 7); // Turn off digital Operation on PC7
GPIO_PORTC_DIR_R &= ~(1 << 7); // Make PC7 as Input
GPIO_PORTC_AFSEL_R |= (1 << 7); // Select Alternate Functionality on PC7
GPIO_PORTC_AMSEL_R |= (1 << 7); // Select Analog Mode on PC7
// Comparator Register configure
COMP_ACREFCTL_R = 0xF | (1 << 9); // Select Internal reference voltage as 2.464 Volts
COMP_ACCTL0_R |= (0x02 << 9) | (0x02 << 2) | (0x01 << 1); // Configure for internal volatge reference, rising edge sense and inverted output
//NVIC_EN0_R |= (1 << INT_COMP0 - 16); //
// Configure A0 and ~CS for graphics LCD
GPIO_PORTB_DIR_R |= 0x42; // Make bits 1 and 6 outputs
GPIO_PORTB_DR2R_R |= 0x42; // Set drive strength to 2mA
GPIO_PORTB_DEN_R |= 0x42; // Enable bits 1 and 6 for digital
// Configure SSI2 pins for SPI configuration
SYSCTL_RCGCSSI_R |= SYSCTL_RCGCSSI_R2; // turn-on SSI2 clocking
GPIO_PORTB_DIR_R |= 0x90; // make bits 4 and 7 outputs
GPIO_PORTB_DR2R_R |= 0x90; // set drive strength to 2mA
GPIO_PORTB_AFSEL_R |= 0x90; // select alternative functions for MOSI, SCLK pins
GPIO_PORTB_PCTL_R = GPIO_PCTL_PB7_SSI2TX | GPIO_PCTL_PB4_SSI2CLK; // map alt fns to SSI2
GPIO_PORTB_DEN_R |= 0x90; // enable digital operation on TX, CLK pins
GPIO_PORTB_PUR_R |= 0x10; // must be enabled when SPO=1
// Configure the SSI2 as a SPI master, mode 3, 8bit operation, 1 MHz bit rate
SSI2_CR1_R &= ~SSI_CR1_SSE; // turn off SSI2 to allow re-configuration
SSI2_CR1_R = 0; // select master mode
SSI2_CC_R = 0; // select system clock as the clock source
SSI2_CPSR_R = 40; // set bit rate to 1 MHz (if SR=0 in CR0)
SSI2_CR0_R = SSI_CR0_SPH | SSI_CR0_SPO | SSI_CR0_FRF_MOTO | SSI_CR0_DSS_8; // set SR=0, mode 3 (SPH=1, SPO=1), 8-bit
SSI2_CR1_R |= SSI_CR1_SSE; // turn on SSI2
}
//*****************************************************************************//
// //
// DELAY FUNCTIONS //
// //
//*****************************************************************************//
void _Analog_Comparator0ISR(void)
{
if(state.induc)
{
float voltage_1, voltage_2;
time_constant = WTIMER5_TAV_R; //
WTIMER5_TAV_R = 0; //
sprintf(str, "%u", time_constant);
putsUart0("\r\n");
putsUart0("time_const_inductor:");
putsUart0(str);
putsUart0("\r\n");
/*
waitMicrosecond(500000);
voltage_2 = VAL_DUT2();
voltage_1 = VAL_DUT1();
esr_value = ( 33 * (voltage_1 / 2.464 ) ) - 33;
*/
COMP_ACMIS_R = 0x01; // clear the comparator interrupt
WTIMER5_CTL_R &= ~TIMER_CTL_TAEN;
}
else
{
time_constant = WTIMER5_TAV_R; //
WTIMER5_TAV_R = 0; //
time_constant /= 40.0; //
//RED_LED ^= 1;
sprintf(str, "%u", time_constant);
putsUart0("\r\n");
putsUart0("time_const:");
putsUart0(str);
putsUart0("\r\n");
COMP_ACMIS_R = 0x01; // clear the comparator interrupt
WTIMER5_CTL_R &= ~TIMER_CTL_TAEN;
}
}
//micro second delay function
void waitMicrosecond(uint32_t us)
{
__asm("WMS_LOOP0: MOV R1, #6" );
__asm("WMS_LOOP1: SUB R1, #1" );
__asm(" CBZ R1, WMS_DONE1");
__asm(" NOP" );
__asm(" NOP" );
__asm(" B WMS_LOOP1" );
__asm("WMS_DONE1: SUB R0, #1" );
__asm(" CBZ R0, WMS_DONE0");
__asm(" NOP" );
__asm(" B WMS_LOOP0" );
__asm("WMS_DONE0:" );
}
// Blocking function that returns only when SW1 is pressed
uint8_t waitPbPress(void)
{
if (PUSH_BUTTON)
return 0;
else
{
waitMicrosecond(50000);
return 1;
}
}
//*****************************************************************************//
// //
// LCR PIN INTIALIZATION FUNCTIONS //
// //
//*****************************************************************************//
//!! LR and C pin if set to high at the same time can lead to Hardware damage !!//
void init_LR_Pin(void)
{
//GPIO configs for LR pin on PF3 (Also board GREEN led)
GPIO_PORTF_DIR_R |= (1 << 3); //Set pin 3 of Port F as output
GPIO_PORTF_DEN_R |= (1 << 3); //Enable digital function for pin 3
}
void init_C_Pin(void)
{
//GPIO configs for LR pin on PF2 (Also board Blue led)
GPIO_PORTF_DIR_R |= (1 << 2); //Set pin 2 of Port F as output
GPIO_PORTF_DEN_R |= (1 << 2); //Enable digital function for pin 2
}
void init_HIGHSIDE_R_Pin(void)
{
GPIO_PORTE_DIR_R |= (1 << 3); //Set pin 3 of Port E as output
GPIO_PORTE_DEN_R |= (1 << 3); //Enable digital function for pin 3
}
void init_LOWSIDE_R_Pin(void)
{
GPIO_PORTE_DIR_R |= (0x02); //Set pin 3 of Port E as output
GPIO_PORTE_DEN_R |= (0x02); //Enable digital function for pin 3
}
void init_INTEGRATE_Pin(void)
{
GPIO_PORTE_DIR_R |= (1 << 2); //Set pin 3 of Port E as output
GPIO_PORTE_DEN_R |= (1 << 2); //Enable digital function for pin 3
}
//*****************************************************************************//
// //
// UART IO Control Functions //
// //
//*****************************************************************************//
// Function for Clearing the Terminal Screen via UART
void clear_screen(void)
{
putsUart0("\x1b[2J\x1b[H"); //ANSI VT100 escape sequence, clear screen and set cursor to home.
}
// Blocking function that writes a serial character when the UART buffer is not full
void putcUart0(char c)
{
while (UART0_FR_R & UART_FR_TXFF);
UART0_DR_R = c;
}
// Blocking function that writes a string when the UART buffer is not full
void putsUart0(char* str)
{
uint8_t i;
for (i = 0; i < strlen(str); i++)
putcUart0(str[i]);
}
// Blocking function that returns with serial data once the buffer is not empty
char getcUart0(void)
{
while (UART0_FR_R & UART_FR_RXFE);
return UART0_DR_R & 0xFF;
}
// Blocking Function for getting the input as string once the buffer is not empty
void getsUart0(void)
{
char input;
while(1)
{
input = getcUart0();
putcUart0(input);
}
}
// Blocking Function for getting the input as string once the buffer is not empty,
// Checks for max string size of 80 characters, Backspace, Uppercase characters and
// Terminates function when Carriage return is received.
void term_getsUart0(void)
{
char c_input;
uint8_t count = 0;
while (1)
{
// Get input from terminal
c_input = getcUart0();
// Echo the input to the terminal, only for test
//putcUart0(c_input);
// Check if string is more than 80 characters
if (count == MAX_SIZE)
{
putsUart0("Can't exceed more than 80 chars"); // Let the User know that character count has been exceeded
reset_buffer(); // Reset the buffer, call function
string[count] = 0; // Return null at the end of the string
break; // Break out of the loop
}
// Implement Backspace and Carriage Return
if(c_input == 8)
{
putcUart0(' '); // Clear previous characters when backspace is received
putsUart0("\x1b[D"); // Shift cursor to previous position, ANSI Escape sequences for VT100
if(c_input == 0)
continue;
else
{
count--; // Decrement loop if char != 0
continue;
}
}
else if(c_input == 13)
{
string[count]=0;
break;
}
// Check for Upper case characters and convert them to lower
if (c_input >= 65 && c_input <= 90)
string[count++] = c_input + 32;
else
string[count++] = c_input;
}
putsUart0("\r\n");
}
//*****************************************************************************//
// //
// ADC IO Control Functions //
// //
//*****************************************************************************//
int16_t read_Adc1Ss3()
{
ADC1_PSSI_R |= ADC_PSSI_SS3; // set start bit
while (ADC1_ACTSS_R & ADC_ACTSS_BUSY); // wait until SS3 is not busy
return ADC1_SSFIFO3_R; // get single result from the FIFO
}
int16_t read_Adc0Ss3()
{
ADC0_PSSI_R |= ADC_PSSI_SS3; // set start bit
while (ADC0_ACTSS_R & ADC_ACTSS_BUSY); // wait until SS3 is not busy
return ADC0_SSFIFO3_R; // get single result from the FIFO
}
//*****************************************************************************//
// //
// STRING PARSING FUNCTIONS //
// //
//*****************************************************************************//
//Function for tokenizing string
void parse_string(void)
{
uint8_t i = 0;
uint8_t j = 0;
uint8_t array_shift = 0;
//Convert character into string blocks and tokenize these blocks with delimiters
for (i = 0; i <= strlen(string); i++)
{
if (string[i]== ' '|| string[i] == '\0' || string[i] == 9 || SPECIAL_CHARS)
{
new_string[args_no][args_str] = 0;
args_no++;
args_str = 0;
}
else
{
new_string[args_no][args_str] = string[i];
args_str++;
}
}
array_shift = 1;
//shift the words to be printed to the starting position of the array
while (array_shift)
{
array_shift = 0;
//keep swapping elements to the right
for (j = 0; j < args_no - 1; j++)
{
// Check for null elements and accordingly sort Array
if (strncmp(new_string[j], "\0", 1) == 0 && strncmp(new_string[j + 1], "\0", 1) != 0)
{
array_shift = 1;
// Exchange elements
strcpy(new_string[j], new_string[j + 1]);
strcpy(new_string[j + 1], "\0");
}
}
}
// Determine type of string for every argument
for (j = 0; j < args_no; j++)
{
for (i = 0; i < strlen(new_string[j]); i++)
{
if (new_string[j][i] >= 97 && new_string[j][i] <= 122) // Check if character is between a to z for the particular argument position
a[j] = 1; // Store 1 if true at that particular argument position
else if (new_string[j][i] >= 48 && new_string[j][i] <= 57) // Check if character is between 0 to 9 for the particular argument position
n[j] = 1; // Store 1 if true at that particular argument position
}
}
// Update argument number from type of characters
for (j = 0; j < args_no; j++)
{
if (a[j] == 0 && n[j] == 1)
{
putsUart0("numeric string \r\n");
args_updated++;
}
else if (a[j] == 1 && n[j] == 0)
{
putsUart0("alpha string \r\n");
args_updated++;
}
else if (a[j] == 1 && n[j] == 1)
{
putsUart0("alpha numeric string \r\n");
args_updated++;
}
}
}
// Function to check the argument for a particular string/verb,
// return value: 1, if conditions are satisfied.
uint8_t is_command(char* command, uint8_t arg)
{
arg = arg + 1;
if (strcmp(new_string[0], command) == 0 && ARGS_CHECK(arg)) //if ARGS_CHECK is false, function returns 0
return 0;
return 1;
}
//*****************************************************************************//
// //
// USER TEST FUNCTIONS //
// //
//*****************************************************************************//
#ifdef TEST
int count = 0;
void test_getsUART0(void)
{
/* Loop variables */
uint8_t i, y = 0;
/* Let user type chars till reaches 80 chars */
for (i = 0; i < MAX_SIZE; i++)
{
string[i] = getcUart0();
//putcUart0(string[i]);
/* Lowercase the string */
if (string[i] >= 65 && string[i] <= 90)
string[i] += 32;
/* Test condition for backspace */
else if (string[i] == 8)
{
--i;
string[i] = '\0';
}
/* Test condition for carriage return */
else if (string[i] == 13)
{
string[i] = '\0';
break;
}
/* Test condition for Max Character size */
else if (i == (MAX_SIZE - 1))
{
putsUart0("\r\n");
putsUart0("Can't Exceed more than 80 Chars\r\n");
break;
}
}
putcUart0(13);
putcUart0(10);
}
#endif
#ifdef TEST
void test_commands(void)
{
//********************************************************** Step 4 ******************************************************************//
// LED commands Test //
//Check arguments for string = set
if (is_command("set", 2))
{
// Compare received string and then turn on Green Led
if (strcmp(new_string[0], "set") == 0 && (strcmp(new_string[1], "green") == 0) && (strcmp(new_string[2], "on") == 0))
{
putsUart0("!! Green on !! \n\r");
GPIO_PORTF_DIR_R |= (1 << 3); // Set pin 3 of Port F as output
GPIO_PORTF_DEN_R |= (1 << 3); // Enable digital function for pin 3
BLUE_LED = 0; //
RED_LED = 0; //
GREEN_LED = 1; // Turn Green Led on
}
// Compare received string and then turn on Red Led
else if (strcmp(new_string[0], "set") == 0 && (strcmp(new_string[1], "red") == 0) && (strcmp(new_string[2], "on") == 0))
{
putsUart0("!! Red on !! \n\r");
BLUE_LED = 0; //
GREEN_LED = 0; //
RED_LED = 1; // Turn Red Led on
}
// Compare received string and then turn On Blue Led
else if (strcmp(new_string[0], "set") == 0 && (strcmp(new_string[1], "blue") == 0) && (strcmp(new_string[2], "on") == 0))
{
putsUart0("!! Blue on !! \n\r");
GPIO_PORTF_DIR_R |= (1 << 2); // Set pin 2 of Port F as output
GPIO_PORTF_DEN_R |= (1 << 2); // Enable digital function for pin 2
GREEN_LED = 0; //
RED_LED = 0; //
BLUE_LED = 1; // Turn Blue on
}
}
else
{
putsUart0("This Command Takes at least 2 args \n\r");
putsUart0("Example \"set\" \"green \\ red\" \" on \" \n\r");
}
//*********************************************************** STEP 5 *******************************************************************//
// Check agrs for string = Measure
if (is_command("enable", 1))
{
// Compare received string and then enable LR
if ((strcmp(new_string[0], "enable") == 0) && (strcmp(new_string[1], "lr") == 0))
{
putsUart0("!! Enable LR Pin !! \n\r"); //
init_LR_Pin(); // test function that turns on LR pin which is also green led on board
CAP = 0; // Turn off Measure Capacitance for preventing damage to Daughter Board
LR = 1; // Turn on Measure LR pin
}
// Compare received string and then enable C
else if ((strcmp(new_string[0], "enable") == 0) && (strcmp(new_string[1], "c") == 0))
{
putsUart0("!! Enable Capacitance Pin !! \n\r"); //
init_C_Pin(); // test function that turns on C pin which is also blue led on board
LR = 0; //
CAP = 1; //
}
// Compare received string and then enable Highside R
else if ((strcmp(new_string[0], "enable") == 0) && (strcmp(new_string[1], "highr") == 0))
{
putsUart0("!! Enable Highside_R Pin !! \n\r"); //
init_HIGHSIDE_R_Pin(); //
LOW_R = 0; //
HIGH_R = 1; //
}
// Compare received string and then enable Lowside R
else if ((strcmp(new_string[0], "enable") == 0) && (strcmp(new_string[1], "lowr") == 0))
{
putsUart0("!! Enable Lowside_R Pin !! \n\r"); //
init_LOWSIDE_R_Pin(); //
HIGH_R = 0; //
LOW_R = 1; //
}
// Compare received string and then Integrate
else if((strcmp(new_string[0], "enable") == 0) && (strcmp(new_string[1], "integrate") == 0))
{
putsUart0("!! Enable Integrate Pin !! \n\r"); //
init_INTEGRATE_Pin(); //
INTEGRATE = 1; //
}
}
else
{
putsUart0("This Command Takes 1 argument \n\r");
putsUart0("Example \"Enable\" \"LR, C etc.\" \n\r");
}
// Turn off all ports
if (strcmp(new_string[0], "off") == 0)
{
GPIO_PORTF_DATA_R &= ~(0xFF); //
GPIO_PORTE_DATA_R &= ~(0xFF); //
GPIO_PORTC_DATA_R &= ~(0xFF); //
GPIO_PORTD_DATA_R &= ~(0xFF); //
}
// Clear the Terminal Screen
if (strcmp(new_string[0], "clear") == 0)
{
clear_screen(); // Call Clear Screen Function
putsUart0("Screen Cleared \r\n"); // Print to tell user that screen is cleared
}
}
#endif
//*****************************************************************************//
// //
// PROJECT COMMAND FUNCTIONS //
// //
//*****************************************************************************//
void all_pins_zero(void)
{
GPIO_PORTF_DATA_R &= ~(0xFF);
GPIO_PORTE_DATA_R &= ~(0xFF);
GPIO_PORTC_DATA_R &= ~(0xFF);
GPIO_PORTD_DATA_R &= ~(0xFF);
}
// Flash led for 500 milliseconds
void flash_led(void)
{
RED_LED = 1;
waitMicrosecond(500000); //500 ms delay
RED_LED = 0;
}
void project_info(void)
{
putsUart0("\033]2;| Name:Aditya Mall | ID:1001626048 | (c) 2018 |\007"); // Window Title Information
putsUart0("\033]10;#FFFFFF\007"); // Text Color
putsUart0("\033]11;#4169E1\007"); // Background Color
putsUart0("\r\n");
putsUart0("Project: LCR Meter using EK-TM4C123GXL Evaluation Board.\r\n"); // Project Name
putsUart0("Name : Aditya Mall \r\n"); // Author Name
putsUart0("ID : 1001626048 \r\n" ); // Author ID
putsUart0("email : \033[38;5;51;[email protected]\033[0m \r\n"); // Email Info, Foreground color:Cyan
// Tell User to activate local echo from respectuve terminal setting if available
putsUart0("\r\n");
putsUart0("\033[33;1m!! This Program requires Local Echo, please enable Local Echo from settings !!\033[0m \r\n"); // Foreground color:Yellow
putsUart0("\033[33;1m!! Set Stack Size to 8K bytes if you wish to run the source code !!\033[0m \r\n");
putsUart0("\r\n");
}
void project_info_lcd(void)
{
clearGraphicsLcd();
setGraphicsLcdTextPosition(35, 3);
putsGraphicsLcd("LCR Meter");
waitMicrosecond(2000000);
clearGraphicsLcd();
setGraphicsLcdTextPosition(0, 0);
putsGraphicsLcd("Name: Aditya Mall");
setGraphicsLcdTextPosition(0, 2);
putsGraphicsLcd("ID : 1001626048");
waitMicrosecond(2000000);
clearGraphicsLcd();
}
void user_lcd_cmd_info(void)
{
setGraphicsLcdTextPosition(0, 0);
putsGraphicsLcd("Press L,C or R button");
setGraphicsLcdTextPosition(35, 1);
putsGraphicsLcd("or");
setGraphicsLcdTextPosition(0, 2);
putsGraphicsLcd("Type on terminal");
}
void project_commands(void)
{
// Test project specific commands //
// Voltage command
if(is_command("voltage", 0))
{
if(strcmp(new_string[0], "voltage") == 0 )
{
sprintf(str, "%u", raw_DUT1);
putsUart0("RAW_VAL_DUT1:");
putsUart0(str);
putsUart0("\r\n");
sprintf(str, "%3.3f", fabs(VAL_DUT1()));
putsUart0("DUT1_VAL:");
putsUart0(str);
putsUart0("\r\n");
sprintf(str, "%u", raw_DUT2);
putsUart0("RAW_VAL_DUT2:");
putsUart0(str);
putsUart0("\r\n");
sprintf(str, "%3.3f", fabs(VAL_DUT2()));
putsUart0("DUT2_VAL:");
putsUart0(str);
putsUart0("\r\n");
sprintf(str, "%3.3f", (VAL_DUT2() - VAL_DUT1()));
putsUart0("\r\n");
putsUart0("Voltage:");
putsUart0(str);
putsUart0("\r\n");
clearGraphicsLcd();
setGraphicsLcdTextPosition(0, 2);
putsGraphicsLcd("Voltage:-");
setGraphicsLcdTextPosition(0, 3);
putsGraphicsLcd(str);
}
}
else
{
putsUart0("voltage Command Takes No arguments \n\r");
}
//resistance command
if(is_command("resistor", 0))
{
if(strcmp(new_string[0], "resistor") ==0 )
{
while(1)
{
putsUart0("\r\n");
putsUart0("Measuring Resistance....:");
putsUart0("\r\n");
clearGraphicsLcd();
setGraphicsLcdTextPosition(0, 1);
putsGraphicsLcd("Measuring Resistance...");
NVIC_EN0_R |= (1 << INT_COMP0 - 16);
waitMicrosecond(500000);
resistor();
waitMicrosecond(1000000);
//resistance = (time_constant - 14.61) / 1.3191;
//22 - 58
//resistance = (time_constant - 9.3547)/1.2585;
resistance = (time_constant - 15.564)/1.104;
sprintf(str, "%.2f Ohms", resistance);
putsUart0("Resistance Value");
putsUart0(str);
putsUart0("\r\n");
clearGraphicsLcd();
setGraphicsLcdTextPosition(0, 2);
putsGraphicsLcd("Resistance Value:-");
setGraphicsLcdTextPosition(0, 3);
putsGraphicsLcd(str);
if(try_counter >= 2)
{
NVIC_EN0_R &= ~(1 << INT_COMP0 - 16);
COMP_ACINTEN_R &= ~(0x01);
all_pins_zero();
WTIMER5_TAV_R = 0;
break;
}
try_counter++;
sprintf(str, "%u", try_counter);
putsUart0("try count:");
putsUart0(str);
putsUart0("\r\n");
if(resistance > 0 || time_constant > 10000000)
{
NVIC_EN0_R &= ~(1 << INT_COMP0 - 16);
COMP_ACINTEN_R &= ~(0x01);
all_pins_zero();
WTIMER5_TAV_R = 0;
break;
}
else
{
putsUart0("Trying Again \r\n");
continue;
}
}//while loop
}//sub if statement
}//main if statement
else
{
putsUart0("resistor Command Takes No arguments \n\r");
}
uint8_t loop_cap;