-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
39 lines (27 loc) · 1.07 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pickle
dataset = pd.read_csv('hiring.csv')
dataset['experience'].fillna(0, inplace=True)
dataset['test_score'].fillna(dataset['test_score'].mean(), inplace=True)
X = dataset.iloc[:, :3]
#Converting words to integer values
def convert_to_int(word):
word_dict = {'one':1, 'two':2, 'three':3, 'four':4, 'five':5, 'six':6, 'seven':7, 'eight':8,
'nine':9, 'ten':10, 'eleven':11, 'twelve':12, 'zero':0, 0: 0}
return word_dict[word]
X['experience'] = X['experience'].apply(lambda x : convert_to_int(x))
y = dataset.iloc[:, -1]
#Splitting Training and Test Set
#Since we have a very small dataset, we will train our model with all availabe data.
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
#Fitting model with trainig data
regressor.fit(X, y)
# Saving model to disk
pickle.dump(regressor, open('model.pkl','wb'))
# Loading model to compare the results
model = pickle.load(open('model.pkl','rb'))
print(model.predict([[2, 9, 6]]))