-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmask-detector-image.py
140 lines (118 loc) · 5.19 KB
/
mask-detector-image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# import the necessary libs
import numpy as np
import argparse
import time
import cv2
import os
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="path to input image")
ap.add_argument("-o", "--output",help="path to output image")
ap.add_argument("-y", "--yolo", required=True, help="base path to YOLO directory")
ap.add_argument("-c", "--confidence", type=float, default=0.45,help="minimum probability to filter weak detections")
ap.add_argument("-t", "--threshold", type=float, default=0.3,help="threshold when applying non-max suppression")
args = vars(ap.parse_args())
# load the class labels our YOLO model was trained on
labelsPath = os.path.sep.join([args["yolo"], "obj.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# initialize a list of colors to represent each possible class label (red and green)
COLORS = [[0,0,255],[0,255,0]]
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([args["yolo"], "yolov4_face_mask.weights"])
configPath = os.path.sep.join([args["yolo"], "yolov4-obj.cfg"])
# load our YOLO object detector
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# load our input image and get it height and width
image = cv2.imread(args["image"])
(H, W) = image.shape[:2]
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# construct a blob from the input image and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes and
# associated probabilities
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (832, 832),swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln) #list of 3 arrays, for each output layer.
end = time.time()
# show timing information on YOLO
print("[INFO] YOLO took {:.6f} seconds".format(end - start))
# initialize our lists of detected bounding boxes, confidences, and
# class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability) of
# the current object detection
scores = detection[5:] #last 2 values in vector
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > args["confidence"]:
# scale the bounding box coordinates back relative to the
# size of the image, keeping in mind that YOLO actually
# returns the center (x, y)-coordinates of the bounding
# box followed by the boxes' width and height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top and
# and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates, confidences,
# and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply NMS to suppress weak, overlapping bounding
# boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"],args["threshold"])
border_size=100
border_text_color=[255,255,255]
#Add top-border to image to display stats
image = cv2.copyMakeBorder(image, border_size,0,0,0, cv2.BORDER_CONSTANT)
#calculate count values
filtered_classids=np.take(classIDs,idxs)
mask_count=(filtered_classids==1).sum()
nomask_count=(filtered_classids==0).sum()
#display count
text = "NoMaskCount: {} MaskCount: {}".format(nomask_count, mask_count)
cv2.putText(image,text, (0, int(border_size-50)), cv2.FONT_HERSHEY_SIMPLEX,0.8,border_text_color, 2)
#display status
text = "Status:"
cv2.putText(image,text, (W-300, int(border_size-50)), cv2.FONT_HERSHEY_SIMPLEX,0.8,border_text_color, 2)
ratio=nomask_count/(mask_count+nomask_count)
if ratio>=0.1 and nomask_count>=3:
text = "Danger !"
cv2.putText(image,text, (W-200, int(border_size-50)), cv2.FONT_HERSHEY_SIMPLEX,0.8,[26,13,247], 2)
elif ratio!=0 and np.isnan(ratio)!=True:
text = "Warning !"
cv2.putText(image,text, (W-200, int(border_size-50)), cv2.FONT_HERSHEY_SIMPLEX,0.8,[0,255,255], 2)
else:
text = "Safe "
cv2.putText(image,text, (W-200, int(border_size-50)), cv2.FONT_HERSHEY_SIMPLEX,0.8,[0,255,0], 2)
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1]+border_size)
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the image
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(image, (x, y), (x + w, y + h), color, 1)
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
cv2.putText(image, text, (x, y-5), cv2.FONT_HERSHEY_SIMPLEX,0.5, color, 1)
if args["output"]:
#save the image
cv2.imwrite(args["output"],image)
# show the output image
cv2.imshow("Image",image)
cv2.waitKey(0)