-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmask-detector-video.py
203 lines (182 loc) · 8.64 KB
/
mask-detector-video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# import the necessary packages
from imutils.video import FPS
import numpy as np
import argparse
from sendsms import sendSMS
from datetime import datetime
import pytz
import cv2
import os
# it will get the time zone
# of the specified location
IST = pytz.timezone('Asia/Kolkata')
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-y", "--yolo", required=True,help="base path to YOLO directory")
ap.add_argument("-i", "--input", type=str, default="",help="path to (optional) input video file")
ap.add_argument("-o", "--output", type=str, default="",help="path to (optional) output video file")
ap.add_argument("-d", "--display", type=int, default=1,help="whether or not output frame should be displayed")
ap.add_argument("-c", "--confidence", type=float, default=0.45,help="minimum probability to filter weak detections")
ap.add_argument("-t", "--threshold", type=float, default=0.3,help="threshold when applyong non-maxima suppression")
ap.add_argument("-u", "--use-gpu", type=bool, default=0,help="boolean indicating if CUDA GPU should be used")
ap.add_argument("-e", "--use-email", type=bool, default=0,help="boolean indicating if Emails need to be send or not")
args = vars(ap.parse_args())
# setup e-mail config if yes.
if args["use_email"]:
from sendEmail import sendEmail
# load the class labels our YOLO model was trained on
labelsPath = os.path.sep.join([args["yolo"], "obj.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# initialize a list of colors to represent each possible class label(red and green)
COLORS = [[0,0,255],[0,255,0]]
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([args["yolo"], "yolov4_face_mask.weights"])
configPath = os.path.sep.join([args["yolo"], "yolov4-obj.cfg"])
# load our YOLO object detector trained on mask dataset
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# check if we are going to use GPU
if args["use_gpu"]:
# set CUDA as the preferable backend and target
print("[INFO] setting preferable backend and target to CUDA...")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# initialize the width and height of the frames in the video file
W = None
H = None
# initialize the video stream and pointer to output video file, then
# start the FPS timer
print("[INFO] accessing video stream...")
vs = cv2.VideoCapture(args["input"] if args["input"] else 0)
writer = None
next_frame_towait=5 #for sms
fps = FPS().start()
# loop over frames from the video file stream
while True:
# read the next frame from the file
(grabbed, frame) = vs.read()
# if the frame was not grabbed, then we have reached the end
# of the stream
if not grabbed:
break
# if the frame dimensions are empty, grab them
if W is None or H is None:
(H, W) = frame.shape[:2]
# construct a blob from the input frame and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes
# and associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (864, 864),swapRB=True, crop=False)
net.setInput(blob)
layerOutputs = net.forward(ln)
# initialize our lists of detected bounding boxes, confidences,
# and class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > args["confidence"]:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates,
# confidences, and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply NMS to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"],args["threshold"])
#Add top-border to frame to display stats
border_size=100
border_text_color=[255,255,255]
frame = cv2.copyMakeBorder(frame, border_size,0,0,0, cv2.BORDER_CONSTANT)
#calculate count values
filtered_classids=np.take(classIDs,idxs)
mask_count=(filtered_classids==1).sum()
nomask_count=(filtered_classids==0).sum()
#display count
text = "NoMaskCount: {} MaskCount: {}".format(nomask_count, mask_count)
cv2.putText(frame,text, (0, int(border_size-50)), cv2.FONT_HERSHEY_SIMPLEX,0.65,border_text_color, 2)
#display status
text = "Status:"
cv2.putText(frame,text, (W-200, int(border_size-50)), cv2.FONT_HERSHEY_SIMPLEX,0.65,border_text_color, 2)
ratio=nomask_count/(mask_count+nomask_count+0.000001)
if ratio>=0.1 and nomask_count>=3:
text = "Danger !"
cv2.putText(frame,text, (W-100, int(border_size-50)), cv2.FONT_HERSHEY_SIMPLEX,0.65,[26,13,247], 2)
if fps._numFrames>=next_frame_towait: #to send danger sms again,only after skipping few seconds
msg="**Face Mask System Alert** \n\n"
msg+="Camera ID: C001 \n\n"
msg+="Status: Danger! \n\n"
msg+="No_Mask Count: "+str(nomask_count)+" \n"
msg+="Mask Count: "+str(mask_count)+" \n"
datetime_ist = datetime.now(IST)
msg+="Date-Time of alert: \n"+datetime_ist.strftime('%Y-%m-%d %H:%M:%S %Z')
#sendSMS(msg,[7041677471])
#print('Sms sent')
sendEmail(msg)
next_frame_towait=fps._numFrames+(5*25)
elif ratio!=0 and np.isnan(ratio)!=True:
text = "Warning !"
cv2.putText(frame,text, (W-100, int(border_size-50)), cv2.FONT_HERSHEY_SIMPLEX,0.65,[0,255,255], 2)
else:
text = "Safe "
cv2.putText(frame,text, (W-100, int(border_size-50)), cv2.FONT_HERSHEY_SIMPLEX,0.65,[0,255,0], 2)
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1]+border_size)
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the image
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 1)
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
cv2.putText(frame, text, (x, y-5), cv2.FONT_HERSHEY_SIMPLEX,0.5, color, 1)
# check to see if the output frame should be displayed to our
# screen
if args["display"] > 0:
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# if an output video file path has been supplied and the video
# writer has not been initialized, do so now
if args["output"] != "" and writer is None:
# initialize our video writer
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(args["output"], fourcc, 24,(frame.shape[1], frame.shape[0]), True)
# if the video writer is not None, write the frame to the output
# video file
if writer is not None:
writer.write(frame)
# update the FPS counter
fps.update()
# stop the timer and display FPS information
fps.stop()
print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))