-
Notifications
You must be signed in to change notification settings - Fork 1
/
segment_by_ar.py
171 lines (143 loc) · 5.34 KB
/
segment_by_ar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python
# vim: set ts=2 expandtab:
"""
Module: segment_by_ar.py
Desc:
Author: John O'Neil
Email: [email protected]
DATE: Sunday, June 22nd 2014
"""
import argparse
import os
from PIL import Image
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import scipy
import scipy.ndimage
import scipy.stats
from pylab import zeros,amax,median
def area_bb(a):
#return np.prod([max(x.stop-x.start,0) for x in a[:2]])
return width_bb(a)*height_bb(a)
def width_bb(a):
return a[1].stop-a[1].start
def height_bb(a):
return a[0].stop-a[0].start
def area_nz(slice, image):
return np.count_nonzero(image[slice])
def generate_connected_components(image):
s = scipy.ndimage.morphology.generate_binary_structure(2,2)
labels, num_labels = scipy.ndimage.measurements.label(image)#,structure=s)
slices = scipy.ndimage.measurements.find_objects(labels)
return (labels, num_labels, slices)
'''
def draw_bounding_boxes(img,connected_components,max_size=0,min_size=0,color=(0,0,255),line_size=2):
for component in connected_components:
if min_size > 0 and area_bb(component)**0.5<min_size: continue
if max_size > 0 and area_bb(component)**0.5>max_size: continue
#a = area_nz(component,img)
#if a<min_size: continue
#if a>max_size: continue
(ys,xs)=component[:2]
cv2.rectangle(img,(xs.start,ys.start),(xs.stop,ys.stop),color,line_size)
'''
class AreaFilter(object):
def __init__(self, min=10.0, max=100.0):
self._min = min
self._max = max
def filter(self, component):
if area_bb(component)**.5<self._min: return False
if area_bb(component)**.5>self._max: return False
return True
def __call__(self, cc):
return self.filter(cc)
class AspectRatioFilter(object):
def __init__(self, min=0.9, max=1.1):
self._min = min
self._max = max
def filter(self, component):
width = width_bb(component)
height = height_bb(component)
if height == 0:
return False
aspect = float(width)/float(height)
return aspect >= self._min and aspect <= self._max
def __call__(self, cc):
return self.filter(cc)
def generate_mask(image, filter):
(labels, num_labels, components) = generate_connected_components(image)
mask = zeros(image.shape,np.uint8)#,'B')
for label in range(num_labels):
two_d_slice = components[label]
if not filter(two_d_slice):
continue
mask[two_d_slice] |= labels[two_d_slice]==(label+1)
#also add nonzero pixels from all connected components ENTIRELY CONTAINED
#by this cc's bounding box. This is an attempt to partially recover smaller
#character components which might not be connected with the primary character
#(i.e. marks and accent like forms)
for l in range(num_labels):
if l == label: continue
other_slice = components[l]
if contains(two_d_slice, other_slice):
mask[other_slice] |= labels[other_slice]==(l+1)
return mask
def binarize(image, threshold=180):
low_values = image <= threshold
high_values = image > threshold
binary = image
binary[low_values] = 0
binary[high_values] = 255
return binary
def contains(cc_a, cc_b):
w = width_bb(cc_a)
dw = w/5
h = height_bb(cc_a)
dh = h/5
return cc_b[0].start>=(cc_a[0].start-dh) and cc_b[0].stop<=(cc_a[0].stop+dh) and \
cc_b[1].start>=(cc_a[1].start-dw) and cc_b[1].stop<=(cc_a[1].stop+dw)
def main():
#proc_start_time = datetime.datetime.now()
parser = argparse.ArgumentParser(description='Generate Statistics on connected components from manga scan.')
parser.add_argument('infile', help='Input (color) raw Manga scan image to annoate.')
args = parser.parse_args()
infile = args.infile
if not os.path.isfile(infile):
print 'Please provide a regular existing input file. Use -h option for help.'
sys.exit(-1)
image = Image.open(infile).convert("L")
'''
The necessary sigma needed for Gaussian filtering (to remove screentones and other noise) seems
to be a function of the resolution the manga was scanned at (or original page size, I'm not sure).
Assuming 'normal' page size for a phonebook style Manga is 17.5cmx11.5cm (6.8x4.5in).
A scan of 300dpi will result in an image about 1900x1350, which requires a sigma of 1.5 to 1.8.
I'm encountering many smaller images that may be nonstandard scanning dpi values or just smaller
magazines. Haven't found hard info on this yet. They require sigma values of about 0.5 to 0.7.
I'll therefore (for now) just calculate required (nonspecified) sigma as a linear function of vertical
image resolution.
'''
(w,h) = image.size
sigma = (0.8/676.0)*float(h)-0.9
gaussian_filtered = scipy.ndimage.gaussian_filter(image, sigma=sigma)
low_values = gaussian_filtered <= 180
high_values = gaussian_filtered > 180
binary = gaussian_filtered
binary[low_values] = 0
binary[high_values] = 255
area_mask = generate_mask(np.invert(binary), AreaFilter(min=10.0, max=100.0))
ar_mask = generate_mask(area_mask, AspectRatioFilter(min=0.75, max=1.25))
clean_mask = np.invert(ar_mask)
cleaned = np.invert(np.invert(image) * np.invert(clean_mask))
plt.subplot(141)
plt.imshow(image, cmap=cm.Greys_r)
plt.subplot(142)
plt.imshow(binary, cmap=cm.Greys_r)
plt.subplot(143)
plt.imshow(np.invert(area_mask), cmap=cm.Greys_r)
plt.subplot(144)
plt.imshow(cleaned, cmap=cm.Greys_r)
plt.show()
if __name__ == '__main__':
main()