-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
executable file
·435 lines (371 loc) · 18.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
#!/usr/bin/env python3
import os
import argparse
import random
import math
import logging
import yaml
import tqdm
import torch
from torch.nn import functional as F
from torch.autograd import grad
from torch.utils.data import DataLoader
from torchvision import transforms
from tensorboardX import SummaryWriter
from datasets import MultiResolutionImageDataset, MultiResolutionMultiFrameDataset,\
MultiResolutionMultiCropDataset
from utils import save_sample, get_model, accumulate, get_latents
import constants
from logger import setup_logger, LOGGER
import tensor_transforms
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
class CycleLoader:
def _init_loader(self):
self.loader = iter(DataLoader(self.dataset, shuffle=True,
batch_size=self.batch_size,
num_workers=constants.NUM_WORKERS))
def __init__(self, dataset, batch_size, resolution):
dataset.resolution = resolution
self.dataset = dataset
self.batch_size = batch_size
self._init_loader()
def __next__(self):
try:
return next(self.loader)
except StopIteration:
self._init_loader()
return next(self)
def discr_backward_real(discriminator, loss_fn, real_image, step, alpha):
if loss_fn == 'wgan-gp':
real_predict = discriminator(real_image, step=step, alpha=alpha)
real_predict = real_predict.mean() - 0.001 * (real_predict ** 2).mean()
(-real_predict).backward()
grad_loss_val = None
elif loss_fn == 'r1':
real_image.requires_grad = True
LOGGER.debug(f'real image shape {real_image.shape}')
real_scores = discriminator(real_image, step=step, alpha=alpha)
real_predict = F.softplus(-real_scores).mean()
real_predict.backward(retain_graph=True)
grad_real = grad(
outputs=real_scores.sum(), inputs=real_image, create_graph=True
)[0]
grad_penalty = (
grad_real.view(grad_real.size(0), -1).norm(2, dim=1) ** 2
).mean()
grad_penalty = 10 / 2 * grad_penalty
grad_penalty.backward()
grad_loss_val = grad_penalty.item()
return real_predict, grad_loss_val
def discr_backward_fake(discriminator, loss_fn, fake_image, real_image, real_predict, step, alpha, is_n_frames_discr):
fake_predict = discriminator(fake_image, step=step, alpha=alpha)
if loss_fn == 'wgan-gp':
fake_predict = fake_predict.mean()
fake_predict.backward()
eps = torch.rand(fake_image.shape[0], 1 if is_n_frames_discr else fake_image.shape[1], 1, 1, 1).cuda()
x_hat = eps * real_image.data + (1 - eps) * fake_image.data
x_hat.requires_grad = True
hat_predict = discriminator(x_hat, step=step, alpha=alpha)
grad_x_hat = grad(
outputs=hat_predict.sum(), inputs=x_hat, create_graph=True
)[0]
grad_penalty = (
(grad_x_hat.view(grad_x_hat.size(0), -1).norm(2, dim=1) - 1) ** 2
).mean()
grad_penalty = 10 * grad_penalty
grad_penalty.backward()
grad_loss_val = grad_penalty.item()
discr_loss_val = (real_predict - fake_predict).item()
elif loss_fn == 'r1':
fake_predict = F.softplus(fake_predict).mean()
fake_predict.backward()
discr_loss_val = (real_predict + fake_predict).item()
grad_loss_val = None
return discr_loss_val, grad_loss_val
def get_model_state(model):
LOGGER.debug(f'Used samples on saving: {model.used_samples}.')
state = dict()
for key, value in model.items():
if isinstance(value, (torch.nn.Module, torch.optim.Optimizer)):
if isinstance(value, torch.nn.DataParallel):
value = value.module
state[key] = value.state_dict()
elif isinstance(value, (float, int)):
state[key] = value
else:
LOGGER.error(f'Model contains value {key} of wrong type {type(value)}')
raise TypeError
return state
class Trainer:
def __init__(self, config_path, img_data_path, video_data_path, restart, from_step=False, debug=False):
assert not restart or not from_step
with open(config_path) as f:
self.config = yaml.load(f, Loader=yaml.FullLoader)
self.model_name = os.path.basename(config_path)[:-len('.yaml')]
self.setup_dirs()
self.setup_loggers(debug)
self.model = get_model(self.model_name, self.config, restart=restart, from_step=from_step)
self.setup_datasets(img_data_path, video_data_path)
def setup_loggers(self, debug):
level = logging.DEBUG if debug else logging.INFO
setup_logger(out_file=os.path.join(constants.LOG_DIR, 'train_' + self.model_name + '.log'),
stdout_level=level,
file_level=level)
self.summary_writer = SummaryWriter(log_dir=os.path.join(constants.TB_DIR, 'train', self.model_name))
def setup_dirs(self):
os.makedirs(constants.LOG_DIR, exist_ok=True)
self.checkpoint_dir = os.path.join(constants.CHECKPOINT_DIR, self.model_name)
self.sample_dir = os.path.join(constants.SAMPLE_DIR, self.model_name)
os.makedirs(self.checkpoint_dir, exist_ok=True)
os.makedirs(self.sample_dir, exist_ok=True)
def setup_datasets(self, img_data_path, video_data_path):
# Setup datasets
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
self.images_dataset = MultiResolutionImageDataset(
img_data_path,
transforms.Compose([transforms.RandomHorizontalFlip(), transform]),
)
self.n_frames_dataset = None
self.n_crops_dataset = None
n_frames_params = self.config.get('n_frames_params', dict())
n_frames = n_frames_params.get('n', 1)
if n_frames > 1 and (video_data_path is None):
raise ValueError(f'Need video data to train {n_frames}-frames model.')
elif n_frames == 1 and (video_data_path is not None):
raise ValueError("Cannot use video data to train 1-frame model.")
if n_frames > 1:
video_dataset_args = [video_data_path, transform, tensor_transforms.random_horizontal_flip, n_frames]
self.n_frames_dataset = MultiResolutionMultiFrameDataset(*video_dataset_args)
if n_frames_params.get('crop_freq', 0) > 0:
self.n_crops_dataset = MultiResolutionMultiCropDataset(*video_dataset_args)
def save_model(self, *, iteration=None, step=None):
assert (iteration is None) != (step is None)
if iteration is not None:
LOGGER.info(f'Saving model on iteration {iteration}')
save_name = str(iteration).zfill(6)
else:
LOGGER.info(f'Saving model on step {step}')
if self.model.used_samples != 0:
raise Exception
save_name = f'train_step-{step}'
torch.save(get_model_state(self.model), os.path.join(self.checkpoint_dir, f'{save_name}.model'))
def adjust_lr(self, lr, resolution):
for key in ('g_optimizer', 'd_optimizer', 'nfd_optimizer'):
optimizer = self.model[key]
for group in optimizer.param_groups:
mult = group.get('mult', 1)
group['lr'] = lr[resolution] * mult
def run(self):
try:
# setting variables and constants
model = self.model
generator = model.generator.train()
g_running = model.g_running
discriminator = model.discriminator
n_frames_discriminator = model.n_frames_discriminator
g_optimizer = model.g_optimizer
d_optimizer = model.d_optimizer
nfd_optimizer = model.nfd_optimizer
used_samples = model.used_samples
step = model.step
resolution = model.resolution
iteration = model.iteration
n_critic = constants.N_CRITIC
config = self.config
code_size = config.get('code_size', constants.DEFAULT_CODE_SIZE)
lr = config.get('lr', constants.LR)
batch_size = config.get('batch_size', constants.BATCH_SIZE)
init_size = config.get('init_size', constants.INIT_SIZE)
n_gen_steps = config.get('n_gen_steps', 1)
max_size = config['max_size']
max_iterations = config.get('max_iterations', constants.MAX_ITERATIONS)
samples_per_phase = config['samples_per_phase']
loss_fn = config['loss_fn']
n_frames_params = config.get('n_frames_params', dict())
n_frames = n_frames_params.get('n', 1)
n_frames_loss_coef = n_frames_params.get('loss_coef', 0)
n_frames_final_freq = n_frames_params.get('final_freq', 0)
n_frames_decay_duration = n_frames_params.get('decay_duration', 0)
crop_freq = n_frames_params.get('crop_freq', 0)
mixing = config.get('mixing', False)
# getting data
cur_batch_size = batch_size[resolution]
images_dataloader = CycleLoader(
self.images_dataset, cur_batch_size, resolution
)
if n_frames_loss_coef > 0:
n_frames_dataloader = CycleLoader(
self.n_frames_dataset, cur_batch_size, resolution
)
if crop_freq > 0:
n_crops_dataloader = CycleLoader(
self.n_crops_dataset, cur_batch_size, resolution
)
if iteration == 0:
self.adjust_lr(lr, resolution)
pbar = tqdm.trange(iteration, max_iterations, initial=iteration)
requires_grad(generator, False)
requires_grad(discriminator, True)
discr_loss_val = 0
gen_loss_val = 0
grad_loss_val = 0
max_step = int(math.log2(max_size)) - 2
final_progress = False
for iteration in pbar:
model.iteration = iteration
# update alpha, step and resolution
alpha = min(1, 1 / samples_per_phase * (used_samples + 1))
if resolution == init_size or final_progress:
alpha = 1
if not final_progress and used_samples > samples_per_phase * 2:
LOGGER.debug(f'Used samples: {used_samples}.')
used_samples = 0
step += 1
if step > max_step:
step = max_step
final_progress = True
LOGGER.info('Final progress.')
else:
alpha = 0
LOGGER.info(f'Changing resolution from {resolution} to {resolution * 2}.')
resolution = 4 * 2 ** step
model.step = step
model.resolution = resolution
model.used_samples = used_samples
LOGGER.debug(f'Used samples on saving: {model.used_samples}.')
self.save_model(step=step)
self.adjust_lr(lr, resolution)
# setup loaderts
cur_batch_size = batch_size[resolution]
images_dataloader = CycleLoader(
self.images_dataset, cur_batch_size, resolution
)
if n_frames_loss_coef > 0:
n_frames_dataloader = CycleLoader(
self.n_frames_dataset, cur_batch_size, resolution
)
if crop_freq > 0:
n_crops_dataloader = CycleLoader(
self.n_crops_dataset, cur_batch_size, resolution
)
# decide if need to use n_frames on this iteration
if final_progress or n_frames_decay_duration == 0:
n_frames_freq = n_frames_final_freq
else:
n_frames_freq = 0.5 - min(1, used_samples / n_frames_decay_duration) *\
(0.5 - n_frames_final_freq)
n_frames_iteration = True if random.random() < n_frames_freq else False
if n_frames_iteration:
cur_discr = n_frames_discriminator
cur_dataloader = n_frames_dataloader
cur_n_frames = n_frames
cur_d_optimizer = nfd_optimizer
else:
cur_discr = discriminator
cur_dataloader = images_dataloader
cur_n_frames = 1
cur_d_optimizer = d_optimizer
cur_discr.zero_grad()
real_image = next(cur_dataloader)
LOGGER.debug(f'n_frames iteration: {n_frames_iteration}')
LOGGER.debug(f'cur_discr: {type(cur_discr.module)}')
LOGGER.debug(f'real_image shape {real_image.shape}; resolution {resolution}')
# discriminator step
real_predict, real_grad_loss_val = discr_backward_real(cur_discr, loss_fn, real_image, step, alpha)
if mixing and random.random() < 0.9:
num_latents = 2
else:
num_latents = 1
LOGGER.debug(f'Batch size: {cur_batch_size}')
latents = get_latents(cur_batch_size, code_size, 2 * num_latents)
gen_in1 = latents[:num_latents]
gen_in2 = latents[num_latents:]
LOGGER.debug(f'Latents shape: {gen_in1[0].shape}')
fake_image = generator(gen_in1, step=step, alpha=alpha, n_frames=cur_n_frames)
crop_iteration = False
if n_frames_iteration:
if random.random() < crop_freq:
crop_iteration = True
fake_image = next(n_crops_dataloader)
discr_loss_val, fake_grad_loss_val = discr_backward_fake(
cur_discr, loss_fn, fake_image, real_image, real_predict, step, alpha, False)
grad_loss_val = real_grad_loss_val or fake_grad_loss_val
cur_d_optimizer.step()
# generator step
if (iteration + 1) % n_critic == 0:
for gen_step in range(n_gen_steps):
generator.zero_grad()
requires_grad(generator, True)
requires_grad(cur_discr, False)
fake_image = generator(gen_in2, step=step, alpha=alpha, n_frames=cur_n_frames)
LOGGER.debug(f'fake image shape when gen {fake_image.shape}')
predict = cur_discr(fake_image, step=step, alpha=alpha)
if loss_fn == 'wgan-gp':
loss = -predict.mean()
elif loss_fn == 'r1':
loss = F.softplus(-predict).mean()
if n_frames_iteration:
loss *= n_frames_loss_coef
gen_loss_val = loss.item()
loss.backward()
g_optimizer.step()
LOGGER.debug('generator optimizer step')
accumulate(to_model=g_running, from_model=generator.module)
requires_grad(generator, False)
requires_grad(cur_discr, True)
used_samples += real_image.shape[0]
model.used_samples = used_samples
if (iteration + 1) % constants.SAMPLE_FREQUENCY == 0:
LOGGER.info(f'Saving samples on {iteration + 1} iteration.')
save_sample(generator=g_running, alpha=alpha, step=step, code_size=code_size,
resolution=resolution,
save_dir=os.path.join(self.sample_dir),
name=f'{str(iteration + 1).zfill(6)}',
sample_size=constants.SAMPLE_SIZE,
images_n_frames=n_frames, video_n_frames=32)
if (iteration + 1) % constants.SAVE_FREQUENCY == 0:
self.save_model(iteration=iteration+1)
if n_frames_iteration:
prefix = 'NF'
suffix = 'n_frames'
else:
prefix = ''
suffix = 'loss'
state_msg = f'Size: {resolution}; {prefix}G: {gen_loss_val:.3f}; {prefix}D: {discr_loss_val:.3f}; ' +\
f'{prefix}Grad: {grad_loss_val:.3f}; Alpha: {alpha:.5f}'
pbar.set_description(state_msg)
if iteration % constants.LOG_LOSS_FREQUENCY == 0:
self.summary_writer.add_scalar('size', resolution, iteration)
self.summary_writer.add_scalar(f'G/{suffix}', gen_loss_val, iteration)
self.summary_writer.add_scalar(f'D/{suffix}', discr_loss_val, iteration)
self.summary_writer.add_scalar(f'Grad/{suffix}', grad_loss_val, iteration)
self.summary_writer.add_scalar('alpha', alpha, iteration)
if n_frames_iteration and crop_freq > 0:
if crop_iteration:
suffix = 'crop'
else:
suffix = 'no_crop'
self.summary_writer.add_scalar(f'D/{suffix}', discr_loss_val, iteration)
except KeyboardInterrupt:
LOGGER.warning('Interrupted by user')
self.save_model(iteration=iteration)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('config_path')
parser.add_argument('-i', '--img_data_path', required=True)
parser.add_argument('-v', '--video_data_path', default=None)
start_params_group = parser.add_mutually_exclusive_group()
start_params_group.add_argument('--restart', action='store_true', help='Whether to restart training.')
start_params_group.add_argument('--from_step', action='store_true',
help='Whether to restart from step checkpoints.')
parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
trainer = Trainer(**vars(args))
trainer.run()