-
Notifications
You must be signed in to change notification settings - Fork 59
/
emc.py
535 lines (498 loc) · 18 KB
/
emc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
#!/usr/bin/env python
EMC_VERSION = '1.51py'
STENCIL = 3 # or 5
#
###################################################################################################
#
# STENCILS for finite difference
#
# three-point stencil
st3 = []
st3.append([0.0, 0.0, 0.0]); # 0
st3.append([-1.0, 0.0, 0.0]); st3.append([1.0, 0.0, 0.0]); # dx 1-2
st3.append([0.0, -1.0, 0.0]); st3.append([0.0, 1.0, 0.0]) # dy 3-4
st3.append([0.0, 0.0, -1.0]); st3.append([0.0, 0.0, 1.0]) # dz 5-6
st3.append([-1.0, -1.0, 0.0]); st3.append([1.0, 1.0, 0.0]); st3.append([1.0, -1.0, 0.0]); st3.append([-1.0, 1.0, 0.0]); # dxdy 7-10
st3.append([-1.0, 0.0, -1.0]); st3.append([1.0, 0.0, 1.0]); st3.append([1.0, 0.0, -1.0]); st3.append([-1.0, 0.0, 1.0]); # dxdz 11-14
st3.append([0.0, -1.0, -1.0]); st3.append([0.0, 1.0, 1.0]); st3.append([0.0, 1.0, -1.0]); st3.append([0.0, -1.0, 1.0]); # dydz 15-18
#
# five-point stencil
st5 = []
st5.append([0.0, 0.0, 0.0])
#
a = [-2,-1,1,2]
for i in range(len(a)): #dx
st5.append([float(a[i]), 0., 0.])
#
for i in range(len(a)): #dy
st5.append([0., float(a[i]), 0.])
#
for i in range(len(a)): #dz
st5.append([0., 0., float(a[i])])
#
for i in range(len(a)):
i1=float(a[i])
for j in range(len(a)):
j1=float(a[j])
st5.append([j1, i1, 0.]) # dxdy
#
for i in range(len(a)):
i1=float(a[i])
for j in range(len(a)):
j1=float(a[j])
st5.append([j1, 0., i1,]) # dxdz
#
for i in range(len(a)):
i1=float(a[i])
for j in range(len(a)):
j1=float(a[j])
st5.append([0., j1, i1]) # dydz
#
# CONSTANTS
#
Bohr = 0.52917721092
#
####### FUNCTIONS and __main__ ##################################################################
#
def MAT_m_VEC(m, v):
p = [ 0.0 for i in range(len(v)) ]
for i in range(len(m)):
assert len(v) == len(m[i]), 'Length of the matrix row is not equal to the length of the vector'
p[i] = sum( [ m[i][j]*v[j] for j in range(len(v)) ] )
return p
def T(m):
p = [[ m[i][j] for i in range(len( m[j] )) ] for j in range(len( m )) ]
return p
def N(v):
max_ = 0.
for item in v:
if abs(item) > abs(max_): max_ = item
return [ item/max_ for item in v ]
def DET_3X3(m):
assert len(m) == 3, 'Matrix should be of the size 3 by 3'
return m[0][0]*m[1][1]*m[2][2] + m[1][0]*m[2][1]*m[0][2] + m[2][0]*m[0][1]*m[1][2] - \
m[0][2]*m[1][1]*m[2][0] - m[2][1]*m[1][2]*m[0][0] - m[2][2]*m[0][1]*m[1][0]
def SCALE_ADJOINT_3X3(m, s):
a = [[0.0 for i in range(3)] for j in range(3)]
a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2])
a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0])
a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2])
a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0])
a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1])
a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1])
a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2])
a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0])
return a
def INVERT_3X3(m):
tmp = 1.0/DET_3X3(m)
return SCALE_ADJOINT_3X3(m, tmp)
def IS_SYMMETRIC(m):
for i in range(len(m)):
for j in range(len(m[i])):
if m[i][j] != m[j][i]: return False # automatically checks square-shape
return True
def jacobi(ainput):
# from NWChem/contrib/python/mathutil.py
# possible need to rewrite due to licensing issues
#
from math import sqrt
#
a = [[ ainput[i][j] for i in range(len( ainput[j] )) ] for j in range(len( ainput )) ] # copymatrix
n = len(a)
m = len(a[0])
if n != m:
raise 'jacobi: Matrix must be square'
#
for i in range(n):
for j in range(m):
if a[i][j] != a[j][i]:
raise 'jacobi: Matrix must be symmetric'
#
tolmin = 1e-14
tol = 1e-4
#
v = [[0.0 for i in range(n)] for j in range(n)] # zeromatrix
for i in range(n):
v[i][i] = 1.0
#
maxd = 0.0
for i in range(n):
maxd = max(abs(a[i][i]),maxd)
#
for iter in range(50):
nrot = 0
for i in range(n):
for j in range(i+1,n):
aii = a[i][i]
ajj = a[j][j]
daij = abs(a[i][j])
if daij > tol*maxd: # Screen small elements
nrot = nrot + 1
s = aii - ajj
ds = abs(s)
if daij > (tolmin*ds): # Check for sufficient precision
if (tol*daij) > ds:
c = s = 1/sqrt(2.)
else:
t = a[i][j]/s
u = 0.25/sqrt(0.25+t*t)
c = sqrt(0.5+u)
s = 2.*t*u/c
#
for k in range(n):
u = a[i][k]
t = a[j][k]
a[i][k] = s*t + c*u
a[j][k] = c*t - s*u
#
for k in range(n):
u = a[k][i]
t = a[k][j]
a[k][i] = s*t + c*u
a[k][j]= c*t - s*u
#
for k in range(n):
u = v[i][k]
t = v[j][k]
v[i][k] = s*t + c*u
v[j][k] = c*t - s*u
#
a[j][i] = a[i][j] = 0.0
maxd = max(maxd,abs(a[i][i]),abs(a[j][j]))
#
if nrot == 0 and tol <= tolmin:
break
tol = max(tolmin,tol*0.99e-2)
#
if nrot != 0:
print 'jacobi: [WARNING] Jacobi iteration did not converge in 50 passes!'
#
# Sort eigenvectors and values into increasing order
e = [0.0 for i in range(n)] # zerovector
for i in range(n):
e[i] = a[i][i]
for j in range(i):
if e[j] > e[i]:
(e[i],e[j]) = (e[j],e[i])
(v[i],v[j]) = (v[j],v[i])
#
return (v,e)
#
def cart2frac(basis, v):
return MAT_m_VEC( T(INVERT_3X3(basis)), v )
def fd_effmass_st3(e, h):
m = [[0.0 for i in range(3)] for j in range(3)]
m[0][0] = (e[1] - 2.0*e[0] + e[2])/h**2
m[1][1] = (e[3] - 2.0*e[0] + e[4])/h**2
m[2][2] = (e[5] - 2.0*e[0] + e[6])/h**2
m[0][1] = (e[7] + e[8] - e[9] - e[10])/(4.0*h**2)
m[0][2] = (e[11] + e[12] - e[13] - e[14])/(4.0*h**2)
m[1][2] = (e[15] + e[16] - e[17] - e[18])/(4.0*h**2)
# symmetrize
m[1][0] = m[0][1]
m[2][0] = m[0][2]
m[2][1] = m[1][2]
#
print '-> fd_effmass_st3: Effective mass tensor:\n'
for i in range(len(m)):
print '%15.8f %15.8f %15.8f' % (m[i][0], m[i][1], m[i][2])
print ''
#
return m
def fd_effmass_st5(e, h):
m = [[0.0 for i in range(3)] for j in range(3)]
#
m[0][0] = (-(e[1]+e[4]) + 16.0*(e[2]+e[3]) - 30.0*e[0])/(12.0*h**2)
m[1][1] = (-(e[5]+e[8]) + 16.0*(e[6]+e[7]) - 30.0*e[0])/(12.0*h**2)
m[2][2] = (-(e[9]+e[12]) + 16.0*(e[10]+e[11]) - 30.0*e[0])/(12.0*h**2)
#
m[0][1] = (-63.0*(e[15]+e[20]+e[21]+e[26]) + 63.0*(e[14]+e[17]+e[27]+e[24]) \
+44.0*(e[16]+e[25]-e[13]-e[28]) + 74.0*(e[18]+e[23]-e[19]-e[22]))/(600.0*h**2)
m[0][2] = (-63.0*(e[31]+e[36]+e[37]+e[42]) + 63.0*(e[30]+e[33]+e[43]+e[40]) \
+44.0*(e[32]+e[41]-e[29]-e[44]) + 74.0*(e[34]+e[39]-e[35]-e[38]))/(600.0*h**2)
m[1][2] = (-63.0*(e[47]+e[52]+e[53]+e[58]) + 63.0*(e[46]+e[49]+e[59]+e[56]) \
+44.0*(e[48]+e[57]-e[45]-e[60]) + 74.0*(e[50]+e[55]-e[51]-e[54]))/(600.0*h**2)
#
# symmetrize
m[1][0] = m[0][1]
m[2][0] = m[0][2]
m[2][1] = m[1][2]
#
print '-> fd_effmass_st5: Effective mass tensor:\n'
for i in range(3):
print '%15.8f %15.8f %15.8f' % (m[i][0], m[i][1], m[i][2])
print ''
#
return m
def generate_kpoints(kpt_frac, st, h, prg, basis):
from math import pi
#
# working in the reciprocal space
m = INVERT_3X3(T(basis))
basis_r = [[ m[i][j]*2.0*pi for j in range(3) ] for i in range(3) ]
#
kpt_rec = MAT_m_VEC(T(basis_r), kpt_frac)
print '-> generate_kpoints: K-point in reciprocal coordinates: %5.3f %5.3f %5.3f' % (kpt_rec[0], kpt_rec[1], kpt_rec[2])
#
if prg == 'V' or prg == 'P':
h = h*(1/Bohr) # [1/A]
#
kpoints = []
for i in range(len(st)):
k_c_ = [ kpt_rec[j] + st[i][j]*h for j in range(3) ] # getting displaced k points in Cartesian coordinates
k_f = cart2frac(basis_r, k_c_)
kpoints.append( [k_f[0], k_f[1], k_f[2]] )
#
return kpoints
def parse_bands_CASTEP(eigenval_fh, band, diff2_size, debug=False):
# Number of k-points X
nkpt = int(eigenval_fh.readline().strip().split()[3])
# Number of spin components X
spin_components = float(eigenval_fh.readline().strip().split()[4])
# Number of electrons X.00 Y.00
tmp = eigenval_fh.readline().strip().split()
if spin_components == 1:
nelec = int(float(tmp[3]))
n_electrons_down = None
elif spin_components == 2:
nelec = [float(tmp[3])]
n_electrons_down = int(float(tmp[4]))
# Number of eigenvalues X
nband = int(eigenval_fh.readline().strip().split()[3])
energies = []
# Get eigenenergies and unit cell from .bands file
while True:
line = eigenval_fh.readline()
if not line:
break
#
if 'Spin component 1' in line:
for i in range(1, nband + 1):
energy = float(eigenval_fh.readline().strip())
if band == i:
energies.append(energy)
return energies
def parse_EIGENVAL_VASP(eigenval_fh, band, diff2_size, debug=False):
ev2h = 1.0/27.21138505
eigenval_fh.seek(0) # just in case
eigenval_fh.readline()
eigenval_fh.readline()
eigenval_fh.readline()
eigenval_fh.readline()
eigenval_fh.readline()
#
nelec, nkpt, nband = [int(s) for s in eigenval_fh.readline().split()]
if debug: print 'From EIGENVAL: Number of the valence band is %d (NELECT/2)' % (nelec/2)
if band > nband:
print 'Requested band (%d) is larger than total number of the calculated bands (%d)!' % (band, nband)
sys.exit(1)
energies = []
for i in range(diff2_size):
eigenval_fh.readline() # empty line
eigenval_fh.readline() # k point coordinates
for j in range(1, nband+1):
line = eigenval_fh.readline()
if band == j:
energies.append(float(line.split()[1])*ev2h)
if debug: print ''
return energies
#
def parse_nscf_PWSCF(eigenval_fh, band, diff2_size, debug=False):
ev2h = 1.0/27.21138505
eigenval_fh.seek(0) # just in case
engrs_at_k = []
energies = []
#
while True:
line = eigenval_fh.readline()
if not line:
break
#
if "End of band structure calculation" in line:
for i in range(diff2_size):
#
while True:
line = eigenval_fh.readline()
if "occupation numbers" in line:
break
#
if "k =" in line:
a = [] # energies at a k-point
eigenval_fh.readline() # empty line
#
while True:
line = eigenval_fh.readline()
if line.strip() == "": # empty line
break
#
a.extend(line.strip().split())
#
#print a
assert len(a) <= band, 'Length of the energies array at a k-point is smaller than band param'
energies.append(float(a[band-1])*ev2h)
#
#print engrs_at_k
return energies
#
def parse_inpcar(inpcar_fh, debug=False):
import sys
import re
#
kpt = [] # k-point at which eff. mass in reciprocal reduced coords (3 floats)
stepsize = 0.0 # stepsize for finite difference (1 float) in Bohr
band = 0 # band for which eff. mass is computed (1 int)
prg = '' # program identifier (1 char)
basis = [] # basis vectors in cartesian coords (3x3 floats), units depend on the program identifier
#
inpcar_fh.seek(0) # just in case
p = re.search(r'^\s*(-*\d+\.\d+)\s+(-*\d+\.\d+)\s+(-*\d+\.\d+)', inpcar_fh.readline())
if p:
kpt = [float(p.group(1)), float(p.group(2)), float(p.group(3))]
if debug: print "Found k point in the reduced reciprocal space: %5.3f %5.3f %5.3f" % (kpt[0], kpt[1], kpt[2])
else:
print "Was expecting k point on the line 0 (3 floats), didn't get it, exiting..."
sys.exit(1)
p = re.search(r'^\s*(\d+\.\d+)', inpcar_fh.readline())
if p:
stepsize = float(p.group(1))
if debug: print "Found stepsize of: %5.3f (1/Bohr)" % stepsize
else:
print "Was expecting a stepsize on line 1 (1 float), didn't get it, exiting..."
sys.exit(1)
p = re.search(r'^\s*(\d+)', inpcar_fh.readline())
if p:
band = int(p.group(1))
if debug: print "Requested band is : %5d" % band
else:
print "Was expecting band number on line 2 (1 int), didn't get it, exiting..."
sys.exit(1)
p = re.search(r'^\s*(\w)', inpcar_fh.readline())
if p:
prg = p.group(1)
if debug: print "Program identifier is: %5c" % prg
else:
print "Was expecting program identifier on line 3 (1 char), didn't get it, exiting..."
sys.exit(1)
for i in range(3):
p = re.search(r'^\s*(-*\d+\.\d+)\s+(-*\d+\.\d+)\s+(-*\d+\.\d+)', inpcar_fh.readline())
if p:
basis.append([float(p.group(1)), float(p.group(2)), float(p.group(3))])
if debug:
print "Real space basis:"
for i in range(len(basis)):
print '%9.7f %9.7f %9.7f' % (basis[i][0], basis[i][1], basis[i][2])
if debug: print ''
return kpt, stepsize, band, prg, basis
def get_eff_masses(m, basis):
#
vecs_cart = [[0.0 for i in range(3)] for j in range(3)]
vecs_frac = [[0.0 for i in range(3)] for j in range(3)]
vecs_n = [[0.0 for i in range(3)] for j in range(3)]
#
eigvec, eigval = jacobi(m)
#
for i in range(3):
vecs_cart[i] = eigvec[i]
vecs_frac[i] = cart2frac(basis, eigvec[i])
vecs_n[i] = N(vecs_frac[i])
#
em = [ 1.0/eigval[i] for i in range(len(eigval)) ]
return em, vecs_cart, vecs_frac, vecs_n
#
if __name__ == "__main__":
import sys
import re
import datetime
import time
filename = 'emcpy.out_'+str(int(time.time()))
print 'Redirecting output to '+filename
sys.stdout = open(filename, 'w')
#
if STENCIL == 3:
fd_effmass = fd_effmass_st3
st = st3
elif STENCIL == 5:
fd_effmass = fd_effmass_st5
st = st5
else:
print 'main: [ERROR] Wrong value for STENCIL, should be 3 or 5.'
sys.exit(1)
#
print 'Effective mass calculator '+EMC_VERSION
print 'Stencil: '+str(STENCIL)
print 'License: MIT'
print 'Developed by: Alexandr Fonari and Chris Sutton'
print 'Started at: '+datetime.datetime.now().strftime("%Y-%m-%d %H:%M")+'\n'
#
if len(sys.argv) == 1:
print "Run as:"
print " %s input.in [output.out]" % sys.argv[0]
print ""
sys.exit(1)
inpcar_fn = sys.argv[1]
#
try:
inpcar_fh = open(inpcar_fn, 'r')
except IOError:
sys.exit("Couldn't open input file "+inpcar_fn+", exiting...\n")
#
print "Contents of the "+inpcar_fn+" file:\n"
print inpcar_fh.read()
print ""
print "=========="
print ""
#
kpt, stepsize, band, prg, basis = parse_inpcar(inpcar_fh)
#
output_fn = None
if len(sys.argv) > 2:
output_fn = sys.argv[2]
try:
output_fh = open(output_fn, 'r')
except IOError:
sys.exit("Couldn't open input file "+output_fn+", exiting...\n")
#
if output_fn:
print 'Successfully opened '+output_fn+', preparing to parse it...\n'
#
energies = []
if prg.upper() == 'V' or prg.upper() == 'C':
energies = parse_EIGENVAL_VASP(output_fh, band, len(st))
m = fd_effmass(energies, stepsize)
#
if prg.upper() == 'Q':
energies = parse_nscf_PWSCF(output_fh, band, len(st))
m = fd_effmass(energies, stepsize)
#
if prg.upper() == 'P':
energies = parse_bands_CASTEP(output_fh, band, len(st))
m = fd_effmass(energies, stepsize)
#
masses, vecs_cart, vecs_frac, vecs_n = get_eff_masses(m, basis)
print 'Principle effective masses and directions:\n'
for i in range(3):
print 'Effective mass (%d): %12.3f' % (i, masses[i])
print 'Original eigenvectors: %7.5f %7.5f %7.5f' % (vecs_cart[i][0], vecs_cart[i][1], vecs_cart[i][2])
print 'Normal fractional coordinates: %7.5f %7.5f %7.5f\n' % (vecs_n[i][0], vecs_n[i][1], vecs_n[i][2])
#
else:
print 'No output file provided, entering the Generation regime...\n'
#
if prg.upper() == "C" and band != 1:
print " Band should be set to 1 for CRYSTAL calculations,"
print " desired band number is set as a parameter (-b) for cry-getE.pl script."
print ""
sys.exit(1)
#
kpoints = generate_kpoints(kpt, st, stepsize, prg, basis)
kpoints_fh = open('KPOINTS', 'w')
kpoints_fh.write("EMC "+EMC_VERSION+"\n")
kpoints_fh.write("%d\n" % len(st))
kpoints_fh.write("Reciprocal\n")
#
for i, kpt in enumerate(kpoints):
kpoints_fh.write( '%15.10f %15.10f %15.10f 0.01\n' % (kpt[0], kpt[1], kpt[2]) )
#
kpoints_fh.close()
print 'KPOINTS file has been generated in the current directory...\n'