forked from makemake-kbo/sdhasidhas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
monte_carlo.py
156 lines (123 loc) · 5.35 KB
/
monte_carlo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
import matplotlib.pyplot as plt
from black_scholes import black_scholes
from provider_payoff import liquidity_provider_payoff_v3
from save_csv import save_to_csv
# Set the parameters
NUM_SIMULATIONS = 100
NUM_DAYS = 365
LAST_PRICE = 1957 # This should be the current price of ETH
VOLATILITY = 0.4 # This should be the historical VOLATILITY of ETH
EXPECTED_RETURN = 0.00 # This should be the expected return of ETH
NUM_ETH = 1 # Amount of ETH in collateral
NUM_OPTIONS = 1 # Number of options bought
STRIKE_PRICE = LAST_PRICE * 1.3 # 30%+ of the starting price
MATURITY = 365 / 365 # Maturity of the the option
INTEREST_RATE = 0.04
SUPPLIED_PRICE = 1957
SUPPLIED_AMOUNT = 1 # Amount of currency supplied by the liquidity provider
previous_position_value = SUPPLIED_PRICE * SUPPLIED_AMOUNT
# Create an empty matrix to hold the end price data
all_simulated_price = np.zeros((NUM_SIMULATIONS, NUM_DAYS))
# Create an empty matrix to hold the provider payoff data
all_simulated_provider_payoff = np.zeros((NUM_SIMULATIONS, NUM_DAYS))
# Create an empty matrix to hold the portfolio value data
all_simulated_provider_payoff_with_options = np.zeros((NUM_SIMULATIONS, NUM_DAYS))
# Create an empty matrix to hold the options value data
all_simulated_options_value = np.zeros((NUM_SIMULATIONS, NUM_DAYS))
unhedged_positions = np.zeros((NUM_SIMULATIONS, NUM_DAYS))
hedged_positions = np.zeros((NUM_SIMULATIONS, NUM_DAYS))
# Set the plot size
plt.figure(figsize=(10, 5))
# Run the Monte Carlo simulation
for x in range(NUM_SIMULATIONS):
# Calculate daily returns using GBM formula
daily_returns = np.exp(
(EXPECTED_RETURN - 0.5 * VOLATILITY**2) / NUM_DAYS
+ VOLATILITY * np.random.normal(0, 1, NUM_DAYS) / np.sqrt(NUM_DAYS)
)
# Calculate price series
price_series = LAST_PRICE * np.cumprod(daily_returns)
# Plot each simulation
plt.figure(1)
plt.plot(price_series)
plt.title("Price Series Simulation")
# Append the end price of each simulation to the matrix
all_simulated_price[x] = price_series[-1]
# # Calculate the liquidity provider payoffs each day
# provider_payoff = SUPPLIED_AMOUNT * liquidity_provider_payoff_v3(
# SUPPLIED_PRICE, price_series, fee=0.003
# )
# all_simulated_provider_payoff[x] = provider_payoff
# position_value = previous_position_value + provider_payoff
# Initialize the options_value array
options_value = np.zeros(NUM_DAYS)
for day in range(NUM_DAYS):
# calculate impermanent loss for the day
impermanent_loss = (
(SUPPLIED_PRICE - price_series[day]) * SUPPLIED_AMOUNT
if price_series[day] > SUPPLIED_PRICE
else 0.003 * price_series[day]
)
# calculate position value for the day
position_value = previous_position_value + impermanent_loss
unhedged_positions[x, day] = position_value
# Calculate option value for the day
remaining_maturity = MATURITY - (day / 365)
options_value = NUM_OPTIONS * black_scholes(
price_series[day],
STRIKE_PRICE,
remaining_maturity,
INTEREST_RATE,
VOLATILITY,
option_type="call",
)
total_hedged_position = position_value + options_value
hedged_positions[x, day] = total_hedged_position
all_simulated_options_value[x] = options_value
# # Calculate liquidity providers payoff including options hedge
# if x == 0: # For the first simulation, there's no previous day
# provider_payoff_with_options = provider_payoff + all_simulated_options_value[0]
# else:
# provider_payoff_with_options = provider_payoff + all_simulated_options_value[x]
# all_simulated_provider_payoff_with_options[x] = provider_payoff_with_options
# print("provider payoff", all_simulated_provider_payoff)
# print("provider payoff with options", all_simulated_provider_payoff_with_options)
# print("options value", options_value[x])
min_value = min(np.min(unhedged_positions), np.min(hedged_positions))
max_value = max(np.max(unhedged_positions), np.max(hedged_positions))
# Plot the liquidity provider payoff each day
plt.figure(2)
plt.title("Liquidity Provider Payoff Over Time")
for position_value in unhedged_positions:
plt.plot(position_value)
plt.ylim([min_value, max_value + 1000])
# Plot the liquidity provider payoff with options each day
# plt.figure(3)
# plt.title("Liquidity Provider Payoff with Hedge Over Time")
# for provider_payoff in all_simulated_provider_payoff_with_options:
# plt.plot(provider_payoff)
# plt.figure(4)
# plt.title("Options Value Over Time")
# for options_value in all_simulated_options_value:
# plt.plot(options_value)
plt.figure(5)
plt.title("LP Hedged Pool")
for total_value in hedged_positions:
plt.plot(total_value)
plt.ylim([min_value, max_value + 1000])
# Show the plot
plt.show()
# Calculate the expected payoff to the liquidity provider without options
expected_payoff_without_options = np.mean(unhedged_positions[:, -1])
# Calculate the expected payoff to the liquidity provider with options
expected_payoff_with_options = np.mean(hedged_positions[:, -1])
# Print the expected payoffs
print(
"Expected payoff to the liquidity provider without options: ",
expected_payoff_without_options,
)
print(
"Expected payoff to the liquidity provider with options: ",
expected_payoff_with_options,
)