-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPSO.py
executable file
·119 lines (82 loc) · 3.57 KB
/
PSO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import copy
class Particle(object):
"""docstring for Particle"""
def __init__(self, position,velocity):
self.position=copy.copy(position)
self.velocity=copy.copy(velocity)
self.best_pos=copy.copy(position)
def update_time_step(self,time_unit):
self.position+=copy.copy(self.velocity)*time_unit
def update_velocity(self,velocity):
self.velocity=copy.copy(velocity)
def update_best_position(self,position):
self.best_pos=copy.copy(position)
def get_position(self):
return copy.copy(self.position)
def get_best_position(self):
return copy.copy(self.best_pos)
def get_velocity(self):
return copy.copy(self.velocity)
class Swarm(object):
"""docstring for Swarm"""
def __init__(self, particle_count,inertia,cognitive,social,random_position_generator,random_velocity_generator,objective_function,alpha):
self.swarm_best_pos=None
self.swarm_best_value=None
self.particles=[]
self.animation_position=[]
self.particle_count=particle_count
self.alpha=alpha
self.inertia=inertia
self.cognitive=cognitive
self.social=social
self.objective_function=objective_function
for i in range(particle_count):
particle=Particle(random_position_generator(),random_velocity_generator())
self.particles.append(particle)
particle.best_value=self.objective_function(particle.get_position())
if ((self.swarm_best_value != None) or (self.swarm_best_value<self.objective_function(particle.get_position()))):
self.swarm_best_pos=particle.get_position();
def epoch(self,time_unit):
swarm_position=np.zeros(shape=(0,2))
for particle in self.particles:
particle.update_time_step(time_unit)
particle.update_velocity((self.inertia*particle.get_velocity())
+(self.cognitive*np.random.uniform(0,self.alpha)*(self.swarm_best_pos-particle.get_position()))
+(self.social*np.random.uniform(0,self.alpha)*(particle.get_best_position()-particle.get_position())))
if(self.objective_function(particle.get_position())>self.objective_function(particle.get_best_position())):
particle.update_best_position(particle.get_position())
if(self.objective_function(particle.get_best_position())>self.swarm_best_value):
self.swarm_best_pos=particle.get_best_position()
self.swarm_best_value=self.objective_function(particle.get_best_position())
swarm_position=np.vstack([swarm_position, np.array(particle.get_position())])
self.animation_position.append(swarm_position)
def update_plot(self,i):
self.scat.set_offsets([np.array(self.animation_position[i])[:,0],np.array(self.animation_position[i])[:,1]])
return
def finish(self):
self.fig=plt.figure()
plt.axis([-600, 600, -600, 600])
self.scat=plt.scatter(np.array(self.animation_position[0])[:,0],np.array(self.animation_position[0])[:,1])
ani=animation.FuncAnimation(self.fig,self.update_plot,frames=xrange(len(self.animation_position)),interval=100)
#ani.save('Swarm.mp4', fps=30)
plt.show()
print "RMS-> ", np.min([self.objective_function(particle.position) for particle in self.particles])
particle_count=15
inertia=0.5
cognitive=1.49445
social=1.49445
time_unit=1
alpha=0.01
def random_position_generator():
return np.random.uniform(-600,600,2)
def random_velocity_generator():
return np.random.uniform(-0.0002,0.0002,2)
def objective_function(position):
return -np.sqrt(np.mean(position**2))
MySwarm = Swarm(particle_count,inertia,cognitive,social,random_position_generator,random_velocity_generator,objective_function,alpha)
for i in range(200):
MySwarm.epoch(time_unit)
MySwarm.finish()