From 3cc6fc28f088532a8165c96af371f28f7de6576c Mon Sep 17 00:00:00 2001 From: Reed Mullanix Date: Sun, 21 Feb 2021 18:10:10 -0800 Subject: [PATCH] Add a few misc reasoning combinators --- src/Categories/Morphism/Reasoning/Core.agda | 32 +++++++++++++++++++++ 1 file changed, 32 insertions(+) diff --git a/src/Categories/Morphism/Reasoning/Core.agda b/src/Categories/Morphism/Reasoning/Core.agda index 7f44d4d8e..d80c277f2 100644 --- a/src/Categories/Morphism/Reasoning/Core.agda +++ b/src/Categories/Morphism/Reasoning/Core.agda @@ -100,6 +100,12 @@ module IntroElim (a≡id : a ≈ id) where introˡ : f ≈ a ∘ f introˡ = Equiv.sym elimˡ + intro-center : f ∘ g ≈ f ∘ a ∘ g + intro-center = ∘-resp-≈ʳ introˡ + + elim-center : f ∘ a ∘ g ≈ f ∘ g + elim-center = ∘-resp-≈ʳ elimˡ + open IntroElim public module Extends (s : CommutativeSquare f g h i) where @@ -194,12 +200,18 @@ module Cancellers (inv : h ∘ i ≈ id) where f ∘ id ≈⟨ identityʳ ⟩ f ∎ + insertʳ : f ≈ (f ∘ h) ∘ i + insertʳ = Equiv.sym cancelʳ + cancelˡ : h ∘ (i ∘ f) ≈ f cancelˡ {f = f} = begin h ∘ (i ∘ f) ≈⟨ pullˡ inv ⟩ id ∘ f ≈⟨ identityˡ ⟩ f ∎ + insertˡ : f ≈ h ∘ (i ∘ f) + insertˡ = Equiv.sym cancelˡ + cancelInner : (f ∘ h) ∘ (i ∘ g) ≈ f ∘ g cancelInner {f = f} {g = g} = begin (f ∘ h) ∘ (i ∘ g) ≈⟨ pullˡ cancelʳ ⟩ @@ -230,3 +242,23 @@ pull-first {f = f} {g = g} {a = a} {h = h} {i = i} eq = begin f ∘ (g ∘ h) ∘ i ≈⟨ refl⟩∘⟨ assoc ⟩ f ∘ g ∘ h ∘ i ≈⟨ pullˡ eq ⟩ a ∘ h ∘ i ∎ + +pull-center : g ∘ h ≈ a → f ∘ g ∘ h ∘ i ≈ f ∘ a ∘ i +pull-center eq = ∘-resp-≈ʳ (pullˡ eq) + +push-center : g ∘ h ≈ a → f ∘ a ∘ i ≈ f ∘ g ∘ h ∘ i +push-center eq = Equiv.sym (pull-center eq) + +intro-first : a ∘ b ≈ id → f ∘ g ≈ a ∘ (b ∘ f) ∘ g +intro-first {a = a} {b = b} {f = f} {g = g} eq = begin + f ∘ g ≈⟨ introˡ eq ⟩ + (a ∘ b) ∘ f ∘ g ≈⟨ assoc ⟩ + a ∘ b ∘ f ∘ g ≈˘⟨ refl⟩∘⟨ assoc ⟩ + a ∘ (b ∘ f) ∘ g ∎ + +intro-last : a ∘ b ≈ id → f ∘ g ≈ f ∘ (g ∘ a) ∘ b +intro-last {a = a} {b = b} {f = f} {g = g} eq = begin + f ∘ g ≈⟨ introʳ eq ⟩ + (f ∘ g) ∘ a ∘ b ≈⟨ assoc ⟩ + f ∘ g ∘ a ∘ b ≈˘⟨ refl⟩∘⟨ assoc ⟩ + f ∘ (g ∘ a) ∘ b ∎