diff --git a/Cubical.Cohomology.EilenbergMacLane.CupProduct.html b/Cubical.Cohomology.EilenbergMacLane.CupProduct.html index 1ddb5dd9df..eb11192a3c 100644 --- a/Cubical.Cohomology.EilenbergMacLane.CupProduct.html +++ b/Cubical.Cohomology.EilenbergMacLane.CupProduct.html @@ -193,13 +193,13 @@ ⌣-1ₕDep : (n : ) (x : coHom n G' A) PathP i coHom (+'-comm zero n (~ i)) G' A) (x 1ₕ) x ⌣-1ₕDep n x = toPathP {A = λ i coHom (+'-comm zero n (~ i)) G' A} - (flipTransport (⌣-1ₕ n x)) + (flipTransport (⌣-1ₕ n x)) assoc⌣Dep : (n m l : ) (x : coHom n G' A) (y : coHom m G' A) (z : coHom l G' A) PathP i coHom (+'-assoc n m l (~ i)) G' A) ((x y) z) (x (y z)) assoc⌣Dep n m l x y z = toPathP {A = λ i coHom (+'-assoc n m l (~ i)) G' A} - (flipTransport (assoc⌣ n m l x y z)) + (flipTransport (assoc⌣ n m l x y z)) module _ {G'' : CommRing } {A : Type ℓ'} where private @@ -209,5 +209,5 @@ (x y) (-ₕ^[ n · m ] (y x)) comm⌣Dep n m x y = toPathP {A = λ i coHom (+'-comm m n (~ i)) G' A} - (flipTransport (comm⌣ n m x y)) + (flipTransport (comm⌣ n m x y)) \ No newline at end of file diff --git a/Cubical.Cohomology.EilenbergMacLane.RingStructure.html b/Cubical.Cohomology.EilenbergMacLane.RingStructure.html index 80caf41919..039694ba1a 100644 --- a/Cubical.Cohomology.EilenbergMacLane.RingStructure.html +++ b/Cubical.Cohomology.EilenbergMacLane.RingStructure.html @@ -54,7 +54,7 @@ _⌣_ {k} {l} 0ₕ-⌣ k l) {k} {l} ⌣-0ₕ k l) - _ _ _ sym (ΣPathTransport→PathΣ _ _ (sym (+'-assoc _ _ _) , flipTransport (assoc⌣ _ _ _ _ _ _)))) + _ _ _ sym (ΣPathTransport→PathΣ _ _ (sym (+'-assoc _ _ _) , flipTransport (assoc⌣ _ _ _ _ _ _)))) {n} a sym (ΣPathTransport→PathΣ _ _ (sym (+'-rid _) , sym (⌣-1ₕ _ _ cong p subst p coHom p R-ab A) p a) (isSetℕ _ _ _ _))))) diff --git a/Cubical.Foundations.Transport.html b/Cubical.Foundations.Transport.html index 1390ea0eed..2fb1b773be 100644 --- a/Cubical.Foundations.Transport.html +++ b/Cubical.Foundations.Transport.html @@ -175,40 +175,40 @@ -- substition over families of paths -- theorem 2.11.3 in The Book -substInPaths : {} {A B : Type } {a a' : A} - (f g : A B) (p : a a') (q : f a g a) - subst x f x g x) p q sym (cong f p) q cong g p -substInPaths {a = a} f g p q = - J x p' (subst y f y g y) p' q) (sym (cong f p') q cong g p')) - p=refl p - where - p=refl : subst y f y g y) refl q - refl q refl - p=refl = subst y f y g y) refl q - ≡⟨ substRefl {B = y f y g y)} q q - ≡⟨ (rUnit q) lUnit (q refl) refl q refl - -flipTransport : {} {A : I Type } {x : A i0} {y : A i1} - x transport⁻ i A i) y - transport i A i) x y -flipTransport {A = A} {y = y} p = - cong (transport i A i)) p transportTransport⁻ i A i) y - --- special cases of substInPaths from lemma 2.11.2 in The Book -module _ { : Level} {A : Type } {a x1 x2 : A} (p : x1 x2) where - substInPathsL : (q : a x1) subst x a x) p q q p - substInPathsL q = subst x a x) p q - ≡⟨ substInPaths _ a) x x) p q - sym (cong _ a) p) q cong x x) p - ≡⟨ assoc _ a) q p - (refl q) p - ≡⟨ cong (_∙ p) (sym (lUnit q)) q p - - substInPathsR : (q : x1 a) subst x x a) p q sym p q - substInPathsR q = subst x x a) p q - ≡⟨ substInPaths x x) _ a) p q - sym (cong x x) p) q cong _ a) p - ≡⟨ assoc (sym p) q refl - (sym p q) refl - ≡⟨ sym (rUnit (sym p q)) sym p q +substInPaths : { ℓ'} {A : Type } {B : Type ℓ'} {a a' : A} + (f g : A B) (p : a a') (q : f a g a) + subst x f x g x) p q sym (cong f p) q cong g p +substInPaths {a = a} f g p q = + J x p' (subst y f y g y) p' q) (sym (cong f p') q cong g p')) + p=refl p + where + p=refl : subst y f y g y) refl q + refl q refl + p=refl = subst y f y g y) refl q + ≡⟨ substRefl {B = y f y g y)} q q + ≡⟨ (rUnit q) lUnit (q refl) refl q refl + +flipTransport : {} {A : I Type } {x : A i0} {y : A i1} + x transport⁻ i A i) y + transport i A i) x y +flipTransport {A = A} {y = y} p = + cong (transport i A i)) p transportTransport⁻ i A i) y + +-- special cases of substInPaths from lemma 2.11.2 in The Book +module _ { : Level} {A : Type } {a x1 x2 : A} (p : x1 x2) where + substInPathsL : (q : a x1) subst x a x) p q q p + substInPathsL q = subst x a x) p q + ≡⟨ substInPaths _ a) x x) p q + sym (cong _ a) p) q cong x x) p + ≡⟨ assoc _ a) q p + (refl q) p + ≡⟨ cong (_∙ p) (sym (lUnit q)) q p + + substInPathsR : (q : x1 a) subst x x a) p q sym p q + substInPathsR q = subst x x a) p q + ≡⟨ substInPaths x x) _ a) p q + sym (cong x x) p) q cong _ a) p + ≡⟨ assoc (sym p) q refl + (sym p q) refl + ≡⟨ sym (rUnit (sym p q)) sym p q \ No newline at end of file diff --git a/Cubical.Homotopy.EilenbergMacLane.Order2.html b/Cubical.Homotopy.EilenbergMacLane.Order2.html index 311d5850a9..f0a28a87a8 100644 --- a/Cubical.Homotopy.EilenbergMacLane.Order2.html +++ b/Cubical.Homotopy.EilenbergMacLane.Order2.html @@ -133,7 +133,7 @@ λ p (p cong ∣_∣ₕ (sym (merid ptEM-raw)) cong ∣_∣ₕ (merid ptEM-raw) sym p) h a = - toPathP (flipTransport + toPathP (flipTransport {A = λ i Path K2 north merid a i Type } (funExt p (((p₃ p diff --git a/Cubical.Homotopy.EilenbergMacLane.Properties.html b/Cubical.Homotopy.EilenbergMacLane.Properties.html index c5fe805c53..0839af30e3 100644 --- a/Cubical.Homotopy.EilenbergMacLane.Properties.html +++ b/Cubical.Homotopy.EilenbergMacLane.Properties.html @@ -416,7 +416,7 @@ (transport i Path (EM G (suc (suc n))) merid a (~ i) merid a (~ i) ) p)) cong (ΩEM+1→EM (suc n)) - (flipTransport + (flipTransport (((rUnit p cong (p ∙_) (sym (lCancel _))) isCommΩEM-base (suc n) south p _)