From e4b2dc651b53317e1abbc43a3e1cde3345ab8cf5 Mon Sep 17 00:00:00 2001 From: Andrew W Swan Date: Thu, 28 Nov 2024 14:40:03 +0100 Subject: [PATCH] a few minor utility functions --- Cubical/Data/Bool/Properties.agda | 16 +++++++++++++ Cubical/Data/List/FinData.agda | 15 ++++++++++++ Cubical/HITs/Nullification/Properties.agda | 28 +++++++++++++++++++++- Cubical/Relation/Nullary/Properties.agda | 9 ++++++- 4 files changed, 66 insertions(+), 2 deletions(-) diff --git a/Cubical/Data/Bool/Properties.agda b/Cubical/Data/Bool/Properties.agda index be192d0af6..276af18567 100644 --- a/Cubical/Data/Bool/Properties.agda +++ b/Cubical/Data/Bool/Properties.agda @@ -427,3 +427,19 @@ Iso.leftInv Iso-Bool→∙Bool-Bool f = Σ≡Prop (λ _ → isSetBool _ _) (help ; true → (λ j → Bool→Bool→∙Bool (p j) .fst true) ∙ sym (snd f)} help true p = (λ j → Bool→Bool→∙Bool (p j) .fst) ∙ funExt λ { false → sym p ; true → sym (snd f)} + +ΣBool : (b : Bool) (c : (Bool→Type b) → Bool) → Bool +ΣBool false c = false +ΣBool true c = c tt + +ΣBoolΣIso : {b : Bool} {c : (Bool→Type b) → Bool} → + Iso (Bool→Type (ΣBool b c)) (Σ[ z ∈ Bool→Type b ] Bool→Type (c z)) + +Iso.fun (ΣBoolΣIso {true}) x = tt , x +Iso.inv (ΣBoolΣIso {true}) x = snd x +Iso.leftInv (ΣBoolΣIso {true}) _ = refl +Iso.rightInv (ΣBoolΣIso {true}) _ = refl + +ΣBool≃Σ : {b : Bool} {c : (Bool→Type b) → Bool} → + (Bool→Type (ΣBool b c)) ≃ (Σ[ z ∈ Bool→Type b ] Bool→Type (c z)) +ΣBool≃Σ = isoToEquiv ΣBoolΣIso diff --git a/Cubical/Data/List/FinData.agda b/Cubical/Data/List/FinData.agda index 26a2dcf4c1..f4aae57fa2 100644 --- a/Cubical/Data/List/FinData.agda +++ b/Cubical/Data/List/FinData.agda @@ -3,9 +3,12 @@ module Cubical.Data.List.FinData where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function +open import Cubical.Foundations.Equiv +open import Cubical.Foundations.Isomorphism open import Cubical.Data.List open import Cubical.Data.FinData open import Cubical.Data.Empty as ⊥ +open import Cubical.Data.Sigma.Properties open import Cubical.Data.Nat variable @@ -34,6 +37,18 @@ lookup-tabulate : ∀ n → (^a : Fin n → A) lookup-tabulate (suc n) ^a i zero = ^a zero lookup-tabulate (suc n) ^a i (suc p) = lookup-tabulate n (^a ∘ suc) i p +open Iso + +lookup-tabulate-iso : (A : Type ℓ) → Iso (List A) (Σ[ n ∈ ℕ ] (Fin n → A)) +fun (lookup-tabulate-iso A) xs = (length xs) , lookup xs +inv (lookup-tabulate-iso A) (n , f) = tabulate n f +leftInv (lookup-tabulate-iso A) = tabulate-lookup +rightInv (lookup-tabulate-iso A) (n , f) = + ΣPathP ((length-tabulate n f) , lookup-tabulate n f) + +lookup-tabulate-equiv : (A : Type ℓ) → List A ≃ (Σ[ n ∈ ℕ ] (Fin n → A)) +lookup-tabulate-equiv A = isoToEquiv (lookup-tabulate-iso A) + lookup-map : ∀ (f : A → B) (xs : List A) → (p0 : Fin (length (map f xs))) → (p1 : Fin (length xs)) diff --git a/Cubical/HITs/Nullification/Properties.agda b/Cubical/HITs/Nullification/Properties.agda index 4032d28d9d..abb8098328 100644 --- a/Cubical/HITs/Nullification/Properties.agda +++ b/Cubical/HITs/Nullification/Properties.agda @@ -28,7 +28,7 @@ open isPathSplitEquiv private variable - ℓα ℓs ℓ ℓ' : Level + ℓα ℓs ℓ ℓ' ℓ'' : Level A : Type ℓα S : A → Type ℓs X : Type ℓ @@ -250,3 +250,29 @@ secCong (SeparatedAndInjective→Null X sep inj α) x y = fst s ∘ funExt⁻ , λ p i j α → snd s (funExt⁻ p) i α j where s = sec (sep x y α) + +generatorsConnected : {A : Type ℓα} (S : A → Type ℓ) → + (a : A) → isContr (Null S (S a)) +generatorsConnected S a = (hub a ∣_∣) , + elim (λ _ → isNull≡ (isNull-Null S)) (spoke a ∣_∣) + +nullMap : {A : Type ℓα} (S : A → Type ℓ) → + {X : Type ℓ'} {Y : Type ℓ''} → (X → Y) → Null S X → Null S Y +nullMap S f ∣ x ∣ = ∣ f x ∣ +nullMap S f (hub α g) = hub α (λ z → nullMap S f (g z)) +nullMap S f (spoke α g s i) = spoke α (λ z → nullMap S f (g z)) s i +nullMap S f (≡hub p i) = ≡hub (λ z j → nullMap S f (p z j)) i +nullMap S f (≡spoke p s i i₁) = ≡spoke (λ z j → nullMap S f (p z j)) s i i₁ + +nullPreservesIso : {A : Type ℓα} (S : A → Type ℓ) → {X : Type ℓ'} → + {Y : Type ℓ''} → Iso X Y → Iso (Null S X) (Null S Y) +Iso.fun (nullPreservesIso S e) = nullMap S (Iso.fun e) +Iso.inv (nullPreservesIso S e) = nullMap S (Iso.inv e) +Iso.leftInv (nullPreservesIso S e) = + elim (λ _ → isNull≡ (isNull-Null S)) (λ x → cong ∣_∣ (Iso.leftInv e x)) +Iso.rightInv (nullPreservesIso S e) = + elim (λ _ → isNull≡ (isNull-Null S)) (λ y → cong ∣_∣ (Iso.rightInv e y)) + +nullPreservesEquiv : {A : Type ℓα} (S : A → Type ℓ) → {X : Type ℓ'} → + {Y : Type ℓ''} → X ≃ Y → Null S X ≃ Null S Y +nullPreservesEquiv S {X = X} {Y = Y} e = isoToEquiv (nullPreservesIso S (equivToIso e)) diff --git a/Cubical/Relation/Nullary/Properties.agda b/Cubical/Relation/Nullary/Properties.agda index 71150a5a8e..3c57c4dcf3 100644 --- a/Cubical/Relation/Nullary/Properties.agda +++ b/Cubical/Relation/Nullary/Properties.agda @@ -24,7 +24,7 @@ open import Cubical.HITs.PropositionalTruncation.Base private variable - ℓ : Level + ℓ ℓ' : Level A B : Type ℓ P : A -> Type ℓ @@ -62,6 +62,13 @@ Stable× As Bs e = λ where .fst → As λ k → e (k ∘ fst) .snd → Bs λ k → e (k ∘ snd) +StableΣ : ∀ {A : Type ℓ} {P : A → Type ℓ'} → + Stable A → isProp A → ((a : A) → Stable (P a)) → Stable (Σ A P) +StableΣ {P = P} As Aprop Ps e = + let a = (As (λ notA → e (λ (a , _) → notA a))) in + a , + Ps a λ notPa → e (λ (a' , p) → notPa (subst P (Aprop a' a) p)) + fromYes : A → Dec A → A fromYes _ (yes a) = a fromYes a (no _) = a