-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathpandas_questions.py
83 lines (58 loc) · 2.54 KB
/
pandas_questions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""Plotting referendum results in pandas.
In short, we want to make beautiful map to report results of a referendum. In
some way, we would like to depict results with something similar to the maps
that you can find here:
https://github.com/x-datascience-datacamp/datacamp-assignment-pandas/blob/main/example_map.png
To do that, you will load the data as pandas.DataFrame, merge the info and
aggregate them by regions and finally plot them on a map using `geopandas`.
"""
import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt
def load_data():
"""Load data from the CSV files referundum/regions/departments."""
referendum = pd.DataFrame({})
regions = pd.DataFrame({})
departments = pd.DataFrame({})
return referendum, regions, departments
def merge_regions_and_departments(regions, departments):
"""Merge regions and departments in one DataFrame.
The columns in the final DataFrame should be:
['code_reg', 'name_reg', 'code_dep', 'name_dep']
"""
return pd.DataFrame({})
def merge_referendum_and_areas(referendum, regions_and_departments):
"""Merge referendum and regions_and_departments in one DataFrame.
You can drop the lines relative to DOM-TOM-COM departments, and the
french living abroad.
"""
return pd.DataFrame({})
def compute_referendum_result_by_regions(referendum_and_areas):
"""Return a table with the absolute count for each region.
The return DataFrame should be indexed by `code_reg` and have columns:
['name_reg', 'Registered', 'Abstentions', 'Null', 'Choice A', 'Choice B']
"""
return pd.DataFrame({})
def plot_referendum_map(referendum_result_by_region):
"""Plot a map with the results from the referendum.
* Load the geographic data with geopandas from `regions.geojson`.
* Merge these info in `referendum_and_areas`.
* Use the method `GeoDataFrame.plot` to display the result map. The results
should display the rate of 'Choice A' over all expressed ballots.
* Return a gpd.GeoDataFrame with a column 'ratio' containing the results.
"""
return gpd.GeoDataFrame({})
if __name__ == "__main__":
referendum, df_reg, df_dep = load_data()
regions_and_departments = merge_regions_and_departments(
df_reg, df_dep
)
referendum_and_areas = merge_referendum_and_areas(
referendum, regions_and_departments
)
referendum_results = compute_referendum_result_by_regions(
referendum_and_areas
)
print(referendum_results)
plot_referendum_map(referendum_results)
plt.show()