forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reader.py
224 lines (198 loc) · 8.64 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Reads data that is produced by dataset/gen_data.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
from absl import logging
import tensorflow as tf
import util
gfile = tf.gfile
QUEUE_SIZE = 2000
QUEUE_BUFFER = 3
class DataReader(object):
"""Reads stored sequences which are produced by dataset/gen_data.py."""
def __init__(self, data_dir, batch_size, img_height, img_width, seq_length,
num_scales):
self.data_dir = data_dir
self.batch_size = batch_size
self.img_height = img_height
self.img_width = img_width
self.seq_length = seq_length
self.num_scales = num_scales
def read_data(self):
"""Provides images and camera intrinsics."""
with tf.name_scope('data_loading'):
with tf.name_scope('enqueue_paths'):
seed = random.randint(0, 2**31 - 1)
self.file_lists = self.compile_file_list(self.data_dir, 'train')
image_paths_queue = tf.train.string_input_producer(
self.file_lists['image_file_list'], seed=seed, shuffle=True)
cam_paths_queue = tf.train.string_input_producer(
self.file_lists['cam_file_list'], seed=seed, shuffle=True)
img_reader = tf.WholeFileReader()
_, image_contents = img_reader.read(image_paths_queue)
image_seq = tf.image.decode_jpeg(image_contents)
with tf.name_scope('load_intrinsics'):
cam_reader = tf.TextLineReader()
_, raw_cam_contents = cam_reader.read(cam_paths_queue)
rec_def = []
for _ in range(9):
rec_def.append([1.0])
raw_cam_vec = tf.decode_csv(raw_cam_contents, record_defaults=rec_def)
raw_cam_vec = tf.stack(raw_cam_vec)
intrinsics = tf.reshape(raw_cam_vec, [3, 3])
with tf.name_scope('convert_image'):
image_seq = self.preprocess_image(image_seq) # Converts to float.
with tf.name_scope('image_augmentation'):
image_seq = self.augment_image_colorspace(image_seq)
image_stack = self.unpack_images(image_seq)
with tf.name_scope('image_augmentation_scale_crop'):
image_stack, intrinsics = self.augment_images_scale_crop(
image_stack, intrinsics, self.img_height, self.img_width)
with tf.name_scope('multi_scale_intrinsics'):
intrinsic_mat = self.get_multi_scale_intrinsics(intrinsics,
self.num_scales)
intrinsic_mat.set_shape([self.num_scales, 3, 3])
intrinsic_mat_inv = tf.matrix_inverse(intrinsic_mat)
intrinsic_mat_inv.set_shape([self.num_scales, 3, 3])
with tf.name_scope('batching'):
image_stack, intrinsic_mat, intrinsic_mat_inv = (
tf.train.shuffle_batch(
[image_stack, intrinsic_mat, intrinsic_mat_inv],
batch_size=self.batch_size,
capacity=QUEUE_SIZE + QUEUE_BUFFER * self.batch_size,
min_after_dequeue=QUEUE_SIZE))
logging.info('image_stack: %s', util.info(image_stack))
return image_stack, intrinsic_mat, intrinsic_mat_inv
def unpack_images(self, image_seq):
"""[h, w * seq_length, 3] -> [h, w, 3 * seq_length]."""
with tf.name_scope('unpack_images'):
image_list = [
image_seq[:, i * self.img_width:(i + 1) * self.img_width, :]
for i in range(self.seq_length)
]
image_stack = tf.concat(image_list, axis=2)
image_stack.set_shape(
[self.img_height, self.img_width, self.seq_length * 3])
return image_stack
@classmethod
def preprocess_image(cls, image):
# Convert from uint8 to float.
return tf.image.convert_image_dtype(image, dtype=tf.float32)
# Source: https://github.com/mrharicot/monodepth.
@classmethod
def augment_image_colorspace(cls, image_seq):
"""Apply data augmentation to inputs."""
# Randomly shift gamma.
random_gamma = tf.random_uniform([], 0.8, 1.2)
image_seq_aug = image_seq**random_gamma
# Randomly shift brightness.
random_brightness = tf.random_uniform([], 0.5, 2.0)
image_seq_aug *= random_brightness
# Randomly shift color.
random_colors = tf.random_uniform([3], 0.8, 1.2)
white = tf.ones([tf.shape(image_seq)[0], tf.shape(image_seq)[1]])
color_image = tf.stack([white * random_colors[i] for i in range(3)], axis=2)
image_seq_aug *= color_image
# Saturate.
image_seq_aug = tf.clip_by_value(image_seq_aug, 0, 1)
return image_seq_aug
@classmethod
def augment_images_scale_crop(cls, im, intrinsics, out_h, out_w):
"""Randomly scales and crops image."""
def scale_randomly(im, intrinsics):
"""Scales image and adjust intrinsics accordingly."""
in_h, in_w, _ = im.get_shape().as_list()
scaling = tf.random_uniform([2], 1, 1.15)
x_scaling = scaling[0]
y_scaling = scaling[1]
out_h = tf.cast(in_h * y_scaling, dtype=tf.int32)
out_w = tf.cast(in_w * x_scaling, dtype=tf.int32)
# Add batch.
im = tf.expand_dims(im, 0)
im = tf.image.resize_area(im, [out_h, out_w])
im = im[0]
fx = intrinsics[0, 0] * x_scaling
fy = intrinsics[1, 1] * y_scaling
cx = intrinsics[0, 2] * x_scaling
cy = intrinsics[1, 2] * y_scaling
intrinsics = cls.make_intrinsics_matrix(fx, fy, cx, cy)
return im, intrinsics
# Random cropping
def crop_randomly(im, intrinsics, out_h, out_w):
"""Crops image and adjust intrinsics accordingly."""
# batch_size, in_h, in_w, _ = im.get_shape().as_list()
in_h, in_w, _ = tf.unstack(tf.shape(im))
offset_y = tf.random_uniform([1], 0, in_h - out_h + 1, dtype=tf.int32)[0]
offset_x = tf.random_uniform([1], 0, in_w - out_w + 1, dtype=tf.int32)[0]
im = tf.image.crop_to_bounding_box(im, offset_y, offset_x, out_h, out_w)
fx = intrinsics[0, 0]
fy = intrinsics[1, 1]
cx = intrinsics[0, 2] - tf.cast(offset_x, dtype=tf.float32)
cy = intrinsics[1, 2] - tf.cast(offset_y, dtype=tf.float32)
intrinsics = cls.make_intrinsics_matrix(fx, fy, cx, cy)
return im, intrinsics
im, intrinsics = scale_randomly(im, intrinsics)
im, intrinsics = crop_randomly(im, intrinsics, out_h, out_w)
return im, intrinsics
def compile_file_list(self, data_dir, split, load_pose=False):
"""Creates a list of input files."""
logging.info('data_dir: %s', data_dir)
with gfile.Open(os.path.join(data_dir, '%s.txt' % split), 'r') as f:
frames = f.readlines()
subfolders = [x.split(' ')[0] for x in frames]
frame_ids = [x.split(' ')[1][:-1] for x in frames]
image_file_list = [
os.path.join(data_dir, subfolders[i], frame_ids[i] + '.jpg')
for i in range(len(frames))
]
cam_file_list = [
os.path.join(data_dir, subfolders[i], frame_ids[i] + '_cam.txt')
for i in range(len(frames))
]
file_lists = {}
file_lists['image_file_list'] = image_file_list
file_lists['cam_file_list'] = cam_file_list
if load_pose:
pose_file_list = [
os.path.join(data_dir, subfolders[i], frame_ids[i] + '_pose.txt')
for i in range(len(frames))
]
file_lists['pose_file_list'] = pose_file_list
self.steps_per_epoch = len(image_file_list) // self.batch_size
return file_lists
@classmethod
def make_intrinsics_matrix(cls, fx, fy, cx, cy):
r1 = tf.stack([fx, 0, cx])
r2 = tf.stack([0, fy, cy])
r3 = tf.constant([0., 0., 1.])
intrinsics = tf.stack([r1, r2, r3])
return intrinsics
@classmethod
def get_multi_scale_intrinsics(cls, intrinsics, num_scales):
"""Returns multiple intrinsic matrices for different scales."""
intrinsics_multi_scale = []
# Scale the intrinsics accordingly for each scale
for s in range(num_scales):
fx = intrinsics[0, 0] / (2**s)
fy = intrinsics[1, 1] / (2**s)
cx = intrinsics[0, 2] / (2**s)
cy = intrinsics[1, 2] / (2**s)
intrinsics_multi_scale.append(cls.make_intrinsics_matrix(fx, fy, cx, cy))
intrinsics_multi_scale = tf.stack(intrinsics_multi_scale)
return intrinsics_multi_scale