-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathneural_network_train_gridded.py
executable file
·450 lines (354 loc) · 20.8 KB
/
neural_network_train_gridded.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
#!/usr/bin/env python
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm, ListedColormap,BoundaryNorm
import numpy as np
import datetime as dt
import sys, os, pickle, time
from scipy.ndimage.filters import gaussian_filter
import pandas as pd
#from mpl_toolkits.basemap import *
from sklearn.calibration import CalibratedClassifierCV, calibration_curve
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn import metrics
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras import layers, Input
from tensorflow.keras.models import Model, save_model, load_model
from tensorflow.keras.layers import Dense, Activation, Conv2D, AveragePooling2D, Flatten
from tensorflow.keras.layers import Dropout, BatchNormalization
from tensorflow.keras.regularizers import l2
from tensorflow.keras.optimizers import SGD, Adam
from tensorflow.keras import backend as K
from scipy import spatial
from ml_functions import read_csv_files, normalize_multivariate_data, log, get_features
import pdb
def readNCLcm(name):
'''Read in NCL colormap for use in matplotlib'''
rgb, appending = [], False
rgb_dir_ch = '/glade/u/apps/ch/opt/ncl/6.4.0/intel/16.0.3/lib/ncarg/colormaps'
fh = open('%s/%s.rgb'%(rgb_dir_ch,name), 'r')
for line in list(fh.read().splitlines()):
if appending: rgb.append(list(map(float,line.split())))
if ''.join(line.split()) in ['#rgb',';RGB']: appending = True
maxrgb = max([ x for y in rgb for x in y ])
if maxrgb > 1: rgb = [ [ x/255.0 for x in a ] for a in rgb ]
return rgb
def log(msg):
print( time.ctime(time.time()), msg )
def brier_score_keras(obs, preds):
return K.mean((preds - obs) ** 2)
def brier_skill_score_keras(obs, preds):
climo = K.mean((obs - K.mean(obs)) ** 2)
bs = brier_score_keras(obs, preds)
return 1.0 - (bs / climo)
# Can't use bss as training metric because it passes a Tensor to NumPy call, which is not supported
def bss(obs, preds):
bs = np.mean((preds - obs) ** 2)
climo = np.mean((obs - np.mean(obs)) ** 2)
return 1.0 - (bs/climo)
def make_grid(df, predictions, labels):
""" return 2d grid of probability or binary values """
### reconstruct into grid by day (mask makes things more complex than a simple reshape)
mask = pickle.load(open('/glade/u/home/sobash/2013RT/usamask.pk', 'rb'))
unique_forecasts = df['datetime'].unique()
unique_fhr = df['fhr'].unique()
num_dates, num_fhr, num_classes = len(unique_forecasts), len(unique_fhr), predictions.shape[1]
gridded_predictions = np.zeros((num_dates,num_fhr,65*93,num_classes), dtype='f')
gridded_labels = np.zeros((num_dates,num_fhr,65*93,num_classes), dtype='f')
for i, datetime in enumerate(unique_forecasts):
for j, fhr in enumerate(unique_fhr):
thismask = (df['datetime'] == datetime) & (df['fhr'] == fhr)
gridded_predictions[i,j,mask,:] = predictions[thismask,:]
gridded_labels[i,j,mask,:] = labels[thismask,:]
print(datetime, gridded_predictions[i,:].max())
if smooth_probs:
predictions = gridded_predictions.reshape((num_dates,num_fhr,65,93,num_classes))
predictions = gaussian_filter(predictions, sigma=[0,0,smooth_sigma,smooth_sigma,0]).reshape((num_dates,num_fhr,-1,num_classes))
# return only predictions for US points
return predictions[:,:,mask,:].reshape((-1,num_classes))
def plot_forecast(predictions, prefix="", fhr=36):
test = readNCLcm('MPL_Greys')[25::] + [[1,1,1]] + readNCLcm('MPL_Reds')[10::]
#test = readNCLcm('perc2_9lev')[1::]
cmap = ListedColormap(test)
#cmap = plt.get_cmap('RdGy_r')
norm = BoundaryNorm(np.arange(0,1.1,0.1), ncolors=cmap.N, clip=True)
print(predictions)
#awips = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution='l', area_thresh=10000.)
#fig, axes, m = pickle.load(open('/glade/u/home/sobash/NSC_scripts/ch_pk_files/rt2015_ch_CONUS.pk', 'r'))
#fig, axes, m = pickle.load(open('/glade/u/home/sobash/NSC_scripts/dav_pk_files/rt2015_ch_CONUS.pk', 'rb'))
fig, axes, m = pickle.load(open('data/rt2015_ch_CONUS.pk', 'rb'))
lats, lons = predictions['lat'].values, predictions['lon'].values
x, y = m(lons, lats)
# do something convoluted here to only plot each point once
probmax = {}
for i,p in enumerate(predictions['predict_proba'].values):
thiskey = '%f%f'%(lats[i],lons[i])
if thiskey in probmax:
if p > probmax[thiskey]:
probmax[thiskey] = p
else:
probmax[thiskey] = p
for i,p in enumerate(predictions['predict_proba'].values):
thiskey = '%f%f'%(lats[i],lons[i])
thisvalue = probmax[thiskey]
color = cmap(norm([thisvalue])[0])
probmax[thiskey] = -999
if thisvalue >= 0.15:
a = plt.text(x[i], y[i], int(round(thisvalue*100)), fontsize=10, ha='center', va='center', family='monospace', color=color, fontweight='bold')
#a = m.scatter(x, y, s=50, c=predictions['predict_proba'].values, lw=0.5, edgecolors='k', cmap=cmap, norm=norm)
ax = plt.gca()
cdate = sdate + dt.timedelta(hours=fhr)
sdatestr = (cdate - dt.timedelta(hours=2)).strftime('%Y-%m-%d %H:%M:%S UTC')
edatestr = (cdate + dt.timedelta(hours=2)).strftime('%Y-%m-%d %H:%M:%S UTC')
plt.text(0,1.01,'Probability of tornado within 75-mi of a point valid %s - %s'%(sdatestr, edatestr), fontsize=14, transform=ax.transAxes)
# ADD COLORBAR
#cax = fig.add_axes([0.02,0.1,0.02,0.3])
#cb = plt.colorbar(a, cax=cax, orientation='vertical', extendfrac=0.0)
#cb.outline.set_linewidth(0.5)
#cb.ax.tick_params(labelsize=10)
plt.savefig('forecast%s.png'%prefix)
def train_random_forest():
# set up random forest classifier
rf = RandomForestClassifier(n_estimators=rf_params['ntrees'], max_depth=rf_params['max_depth'], min_samples_split=rf_params['min_samples_split'], \
min_samples_leaf=rf_params['min_samples_leaf'], oob_score=True, random_state=10, n_jobs=36)
in_data = df[features].values
# trained with unnormalized data
rf.fit(in_data[train_indices], labels[train_indices])
return rf
def init_neural_network():
#K.tf doesnt work with newer keras?
#session = K.tf.Session(config=K.tf.ConfigProto(allow_soft_placement=True,
session = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
gpu_options=tf.GPUOptions(allow_growth=True),
log_device_placement=False))
K.set_session(session)
def train_neural_network():
# Discard any pre-existing version of the model.
model = None
model = tf.keras.models.Sequential()
# Input layer
model.add(Input(shape=norm_in_data.shape[1:]))
# Hidden layers
for n in range(0,nn_params['num_layers']):
# First hidden layer
model.add(Dense(nn_params['num_neurons'][n], kernel_regularizer=l2()))
model.add(Activation("relu"))
model.add(Dropout(nn_params['dropout']))
model.add(BatchNormalization())
# Output layer
model.add(Dense(numclasses))
model.add(Activation("sigmoid"))
# Optimizer object
opt_dense = SGD(lr=nn_params['lr'], momentum=0.99, decay=1e-4, nesterov=True)
# Compile model with optimizer and loss function. MSE is same as brier_score.
if multiclass: model.compile(opt_dense, loss="binary_crossentropy", metrics=[tf.keras.metrics.MeanSquaredError(), brier_skill_score_keras, tf.keras.metrics.AUC()])
else: model.compile(opt_dense, loss="mse", metrics=[brier_score_keras, brier_skill_score_keras, auc])
# Train model
history = model.fit(norm_in_data[train_indices], labels[train_indices],
batch_size=1024, epochs=nn_params['num_epochs'], verbose=1) #,
# validation_data=(norm_in_data[test_indices], labels[test_indices]))
return (history, model)
def make_labels():
#labels = ((df['hail_rptdist'+twin] < d) & (df['hail_rptdist'+twin] > 0)) | \
labels = ((df['hailone_rptdist'+twin] < d) & (df['hailone_rptdist'+twin] > 0)) | \
((df['wind_rptdist'+twin] < d) & (df['wind_rptdist'+twin] > 0)) | \
((df['torn_rptdist'+twin] < d) & (df['torn_rptdist'+twin] > 0))
labels_wind = ((df['wind_rptdist'+twin] < d) & (df['wind_rptdist'+twin] > 0))
labels_hailone = ((df['hailone_rptdist'+twin] < d) & (df['hailone_rptdist'+twin] > 0))
labels_torn = ((df['torn_rptdist'+twin] < d) & (df['torn_rptdist'+twin] > 0))
labels_sighail = ((df['sighail_rptdist'+twin] < d) & (df['sighail_rptdist'+twin] > 0))
labels_sigwind = ((df['sigwind_rptdist'+twin] < d) & (df['sigwind_rptdist'+twin] > 0))
# labels for multi-class neural network
if multiclass: labels = np.array([ labels, labels_wind, labels_hailone, labels_torn, labels_sighail, labels_sigwind ]).T
else: labels = np.array([ labels ]).T
return labels
def print_scores(fcst, obs, rptclass):
# print scores for this set of forecasts
# histogram of probability values
print(np.histogram(fcst))
# reliability curves
true_prob, fcst_prob = calibration_curve(obs, fcst, n_bins=10)
for i in range(true_prob.size): print(true_prob[i], fcst_prob[i])
# BSS
bss_val = bss(obs, fcst)
print(bss_val)
# ROC auc
auc = metrics.roc_auc_score(obs, fcst)
print(auc)
# output statistics
if output_stats:
model_name = model_fname.split('/')[-1]
fh = open('%s_validation_fhr13-36_%s'%(model,rptclass), 'a')
rel_string = [ '%.3f, %.3f'%(t,f) for t, f in zip(true_prob, fcst_prob) ]
rel_string = ', '.join(rel_string)
print(rel_string)
fh.write('%s %s, %.3f, %.3f, %s\n'%(smooth_probs, model_name, bss_val, auc, rel_string))
fh.close()
### NEURAL NETWORK PARAMETERS ###
latlon_hash_bucket_size = int(sys.argv[4])
nn_params = { 'num_layers': 1, 'num_neurons': [ 1024 ], 'dropout': 0.1, 'lr': 0.001, 'num_epochs': 10, \
'report_window_space':[ int(sys.argv[1]) ], 'report_window_time':[ int(sys.argv[2]) ] }
rf_params = { 'ntrees': 100, 'max_depth': 20, 'min_samples_split': 20, 'min_samples_leaf': 10 }
years = [2011,2012,2013,2014,2015,2016] #k-fold cross validation for these years
#years = [2017]
#years = [ int(sys.argv[3]) ]
model = 'nn'
train = True
predict = False
plot = False
multiclass = True
output_stats = False
thin_data = True
thin_fraction = 0.9999
smooth_probs = False
smooth_sigma = 1
simple_features = True
dataset = 'NSC1km'
dataset = 'NSC3km-12sec'
#dataset = 'RT2020'
scaling_dataset = 'NSC3km-12sec'
mem = 10
trained_models_dir = '/glade/work/sobash/NSC_objects/trained_models'
trained_models_dir = '/glade/work/sobash/NSC_objects'
trained_models_dir = '/glade/work/sobash/NSC_objects/trained_models_paper'
trained_models_dir = '/glade/work/ahijevyc/NSC_objects'
sdate = dt.datetime(2010,1,1,0,0,0)
edate = dt.datetime(2017,12,31,0,0,0)
#edate = dt.datetime(2011,1,31,0,0,0) #TODO remove
dateinc = dt.timedelta(days=1)
##################################
if multiclass: numclasses = 6
else: numclasses = 1
twin = "_%dhr"%nn_params['report_window_time'][0]
# get list of features
features = get_features('basic')
log('Number of features %d'%len(features))
log(nn_params)
log(rf_params)
log('Reading Data')
# read data and reassign data types to float32 to save memory
type_dict = {}
for f in features: type_dict[f]='float32'
df, numfcsts = read_csv_files(sdate, edate, dataset)
lat_x_lon_features = None
if latlon_hash_bucket_size > 0:
longitude = tf.feature_column.bucketized_column(tf.feature_column.numeric_column("lon"), np.arange(int(df.lon.min()), int(df.lon.max()), 1.0).tolist())
latitude = tf.feature_column.bucketized_column(tf.feature_column.numeric_column("lat"), np.arange(int(df.lat.min()), int(df.lat.max()), 1.0).tolist())
latitude_x_longitude = tf.feature_column.crossed_column([latitude,longitude], hash_bucket_size=latlon_hash_bucket_size)
crossed_feature = tf.feature_column.indicator_column(latitude_x_longitude)
if False:
# : read somewhere that keeping original 1-D features is good. crossed features have hashes that can collide.
features.remove('lat')
features.remove('lon')
lat_x_lon_feature_layer = layers.DenseFeatures(crossed_feature)
lat_x_lon_features = lat_x_lon_feature_layer(df[["lon","lat"]].to_dict(orient='list')).numpy().astype("int") # astype("int") maybe? make things faster?
lat_x_lon_features = pd.DataFrame(lat_x_lon_features)
if train:
log('Training Begin')
# normalize data if training a neural network, output scaling values
if model == 'nn':
if os.path.exists('scaling_values_all_%s.pk'%scaling_dataset):
scaling_values = pickle.load(open('scaling_values_all_%s.pk'%scaling_dataset, 'rb'))
# TODO: does df[features].values.astype(np.float32) cut down on memory usage?
norm_in_data, scaling_values = normalize_multivariate_data(df, features, scaling_values=scaling_values)
else:
norm_in_data, scaling_values = normalize_multivariate_data(df, features, scaling_values=None)
pickle.dump(scaling_values, open('scaling_values_all_%s.pk'%(scaling_dataset), 'wb'))
for d in nn_params['report_window_space']:
labels = make_labels()
# Add crossed feature columns to df and norm_in_data.
# concatenate crossed features to DataFrame
if latlon_hash_bucket_size > 0:
df = pd.concat([df.reset_index(drop=True), lat_x_lon_features], axis=1)
# train on random subset of examples (to speed up processing)
if thin_data and model == 'rf':
df, df_test, labels, labels_test = train_test_split(df, labels, train_size=thin_fraction, random_state=10)
elif thin_data and model == 'nn':
df, df_test, norm_in_data, norm_in_data_test, labels, labels_test = train_test_split(df, norm_in_data, labels, train_size=thin_fraction, random_state=10)
for year in years:
# train on examples not occurring in this year
train_indices = np.where(df['year'] != year)[0]
test_indices = np.where(df['year'] == year)[0]
if train_indices.size < 1: continue
#if train_indices.size < 1 or test_indices.size < 1: continue #test_indices only used for validation when training NN
log('training with %d examples -- leaving out %d'%(len(train_indices), year))
# train model!
if model == 'nn':
dense_hist, dense_model = train_neural_network()
log('Writing model')
model_fname = '%s/neural_network_%s_%dkm%s_nn%d_drop%.1f_%dlatlon_hash_buckets_ep10.h5'%(trained_models_dir,year,d,twin,nn_params['num_neurons'][0],nn_params['dropout'],latlon_hash_bucket_size)
dense_model.save(model_fname)
if model == 'rf':
rf = train_random_forest()
log('Writing model')
model_fname = '%s/rf_gridded_%s_%dkm%s_n%d_d%d_m%d_l%d_test.pk'%(trained_models_dir,year,d,twin,rf_params['ntrees'],rf_params['max_depth'],\
rf_params['min_samples_split'],rf_params['min_samples_leaf'])
pickle.dump(rf, open(model_fname, 'wb'))
if predict:
log('Predicting Begin')
predictions_all, labels_all, fhr_all, cape_all, shear_all, date_all = np.empty((0,numclasses)), np.empty((0,numclasses)), np.empty((0,)), np.empty((0,)), np.empty((0,)), np.empty((0,))
uh_all, uh80_all, uh120_all = np.empty((0,)), np.empty((0,)), np.empty((0,))
uh01_120_all = np.empty((0,))
# if predicting, use stored scaling values for NN
if model == 'nn':
#norm_in_data, scaling_values = normalize_multivariate_data(df[features].values.astype(np.float32), features, scaling_values=None)
#pickle.dump(scaling_values, open('scaling_values_all_%s.pk'%(scaling_dataset), 'wb'))
scaling_values = pickle.load(open('scaling_values_all_%s.pk'%scaling_dataset, 'rb'))
norm_in_data, scaling_values = normalize_multivariate_data(df, features, scaling_values=scaling_values)
for d in nn_params['report_window_space']:
labels = make_labels()
for year in years:
# which forecasts to verify?
forecast_hours_to_verify = range(1,37)
forecast_mask = ( (df['fhr'].isin(forecast_hours_to_verify)) & (df['year'] == year) )
if forecast_mask.values.sum() < 1: continue
if year == 2020: model_year = 2016 #use 2016 model that left out 2016 for 2020 predictions
else: model_year = year
log('Making predictions for %d forecasts in %d'%(forecast_mask.values.sum(), year))
if model == 'nn':
# neural network uses normalized data
this_in_data = norm_in_data[forecast_mask,:]
dense_model = None
model_fname = '%s/neural_network_%s_%dkm%s_nn%d_drop%.1f_%dlatlon_hash_buckets_ep10.h5'%(trained_models_dir,year,d,twin,nn_params['num_neurons'][0],nn_params['dropout'],latlon_hash_bucket_size)
log('Predicting using %s'%model_fname)
if not os.path.exists(model_fname): continue
dense_model = load_model(model_fname, custom_objects={'brier_score_keras': tf.keras.metrics.MeanSquaredError(), 'brier_skill_score_keras':brier_skill_score_keras, 'auc':tf.keras.metrics.AUC()})
predictions = dense_model.predict(this_in_data)
if model == 'rf':
# random forest uses unnormalized data
this_in_data = df[features].values
this_in_data = this_in_data[forecast_mask,:]
model_fname = '%s/rf_gridded_%s_%dkm%s_n%d_d%d_m%d_l%d.pk'%(trained_models_dir,model_year,d,twin,rf_params['ntrees'],rf_params['max_depth'],\
rf_params['min_samples_split'],rf_params['min_samples_leaf'])
print(model_fname)
if not os.path.exists(model_fname): continue
rf = pickle.load(open(model_fname, 'rb'))
predictions = rf.predict_proba(this_in_data)
if multiclass: predictions = np.array(predictions)[:,:,1].T #needs to be in shape (examples,classes)
else: predictions = np.array([predictions])[:,:,1].T #needs to be in shape (examples,classes)
#print('putting predictions back on grid and smoothing')
#predictions = make_grid(df[forecast_mask], predictions, labels[forecast_mask,:])
log('Appending predictions')
predictions_all = np.append(predictions_all, predictions, axis=0)
labels_all = np.append(labels_all, labels[forecast_mask,:], axis=0)
fhr_all = np.append(fhr_all, df[forecast_mask]['fhr'].values, axis=0)
cape_all = np.append(cape_all, df[forecast_mask]['MUCAPE'].values, axis=0)
shear_all = np.append(shear_all, df[forecast_mask]['SHR06'].values, axis=0)
uh_all = np.append(uh_all, df[forecast_mask]['UP_HELI_MAX'].values, axis=0)
if d == 40 and twin == '_2hr': uh120_all = np.append(uh120_all, df[forecast_mask]['UP_HELI_MAX-N1T5'].values, axis=0)
if d == 80 and twin == '_2hr': uh120_all = np.append(uh120_all, df[forecast_mask]['UP_HELI_MAX80-N1T5'].values, axis=0)
if d == 120 and twin == '_2hr': uh120_all = np.append(uh120_all, df[forecast_mask]['UP_HELI_MAX120-N1T5'].values, axis=0)
if d == 40 and twin == '_2hr': uh01_120_all = np.append(uh01_120_all, df[forecast_mask]['UP_HELI_MAX01-N1T5'].values, axis=0)
if d == 120 and twin == '_2hr': uh01_120_all = np.append(uh01_120_all, df[forecast_mask]['UP_HELI_MAX01-120-N1T5'].values, axis=0)
date_all = np.append(date_all, df[forecast_mask]['Date'].values, axis=0)
print(uh01_120_all.shape, year)
log('Verifying %d forecast points'%predictions_all.shape[0])
classes = { 0:'all', 1:'wind', 2:'hailone', 3:'torn', 4:'sighail', 5:'sigwind'}
for i in range(numclasses):
print_scores(predictions_all[:,i], labels_all[:,i], classes[i])
# dump predictions
pickle.dump([predictions_all, labels_all.astype(np.bool), fhr_all.astype(np.int8), cape_all.astype(np.int16), shear_all.astype(np.int16), \
uh_all.astype(np.float32), uh120_all.astype(np.float32), uh01_120_all.astype(np.float32), date_all], \
open('predictions_%s_%dkm%s_NSC3km_basic'%(model,nn_params['report_window_space'][0],twin), 'wb'))