-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathverify_forecasts_bss_spatial.py
executable file
·973 lines (762 loc) · 42.1 KB
/
verify_forecasts_bss_spatial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
#!/usr/bin/env python
import datetime
import pickle, sys
import numpy as np
from sklearn import metrics
from sklearn.calibration import CalibratedClassifierCV, calibration_curve
from scipy.ndimage.filters import uniform_filter, gaussian_filter
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from mpl_toolkits.basemap import *
import matplotlib.gridspec as gridspec
from matplotlib.colors import ListedColormap,BoundaryNorm
import multiprocessing
from netCDF4 import Dataset
def readNCLcm(name):
'''Read in NCL colormap for use in matplotlib'''
rgb, appending = [], False
rgb_dir_ch = '/glade/u/apps/ch/opt/ncl/6.4.0/intel/16.0.3/lib/ncarg/colormaps'
fh = open('%s/%s.rgb'%(rgb_dir_ch,name), 'r')
for line in list(fh.read().splitlines()):
if appending: rgb.append(list(map(float,line.split())))
if ''.join(line.split()) in ['#rgb',';RGB']: appending = True
maxrgb = max([ x for y in rgb for x in y ])
if maxrgb > 1: rgb = [ [ x/255.0 for x in a ] for a in rgb ]
return rgb
def bss(obs, preds):
bs = np.mean((preds - obs) ** 2)
climo = np.mean((obs - np.mean(obs)) ** 2)
return 1.0 - (bs/climo)
def plot_stats_hourly(ptype='fss'):
fig = plt.figure(figsize=(8,4))
ax1 = plt.gca()
numrows, numcols = 2,1
numpanels = numrows*numcols
gs = gridspec.GridSpec(numrows,numcols,height_ratios=[4,1])
gs.update(hspace=0.07)
fontsize=10
lw=3.5; ms=3
fig.suptitle('', fontsize=fontsize+2)
### top panel
ax1 = plt.subplot(gs[0])
ax1.tick_params(bottom='on', axis='both', width=0.5, direction='out', labelsize=fontsize-2, labelbottom='off')
ax1.set_xlim((1,36))
ax1.set_xticks([1,6,12,18,24,30,36])
ax1.grid(color='0.7', linewidth=0.25)
for axis in ['top','bottom','left','right']: ax1.spines[axis].set_linewidth(0.5)
for i in range(0,37,24): ax1.axvspan(i,i+12,ymin=0,ymax=1,facecolor='gray',alpha=0.25)
if ptype=='bss':
ax1.set_ylabel('Brier Skill Score', fontsize=fontsize-1)
ax1.set_ylim((-0.1,0.25))
ax1.plot(range(1,37), bss_fhr_uh, marker='o', markersize=ms, markeredgecolor='black', markeredgewidth=0, markerfacecolor='white', linewidth=lw)
ax1.plot(range(1,37), bss_fhr_ml, marker='o', markersize=ms, markeredgecolor='black', markeredgewidth=0, markerfacecolor='white', linewidth=lw)
ax1.fill_between(range(1,37), bss_fhr_uh_boot[:,0], bss_fhr_uh_boot[:,2], color='k', alpha=0.2, lw=0)
ax1.fill_between(range(1,37), bss_fhr_ml_boot[:,0], bss_fhr_ml_boot[:,2], color='k', alpha=0.2, lw=0)
if ptype=='auc':
ax1.set_ylabel('Area Under Curve', fontsize=fontsize-1)
ax1.set_ylim((0.5,1.0))
ax1.plot(range(1,37), auc_fhr_uh, marker='o', markersize=ms, markeredgecolor='black', markeredgewidth=0, markerfacecolor='white', linewidth=lw)
ax1.plot(range(1,37), auc_fhr_ml, marker='o', markersize=ms, markeredgecolor='black', markeredgewidth=0, markerfacecolor='white', linewidth=lw)
ax1.fill_between(range(1,37), auc_fhr_uh_boot[:,0], auc_fhr_uh_boot[:,2], color='k', alpha=0.2, lw=0)
ax1.fill_between(range(1,37), auc_fhr_ml_boot[:,0], auc_fhr_ml_boot[:,2], color='k', alpha=0.2, lw=0)
### bottom panel
ax2 = plt.subplot(gs[1])
ax2.tick_params(bottom='on', axis='both', width=0.5, direction='out', labelsize=fontsize-2, labelbottom='on')
ax2.set_xlabel('Forecast Hour (UTC)', fontsize=fontsize-1, labelpad=4)
ax2.set_xlim((1,36))
ax2.set_xticks([1,6,12,18,24,30,36])
ax2.grid(color='0.7', linewidth=0.25)
for axis in ['top','bottom','left','right']: ax2.spines[axis].set_linewidth(0.5)
for i in range(0,37,24): ax2.axvspan(i,i+12,ymin=0,ymax=1,facecolor='gray',alpha=0.25)
if ptype=='bss':
ax2.set_ylim((0,0.2))
ax2.plot(range(1,37), bss_fhr_ml-bss_fhr_uh, marker='o', markersize=ms, markeredgecolor='black', markeredgewidth=0, markerfacecolor='white', linewidth=lw)
ax2.fill_between(range(1,37), bss_fhr_boot_diff[:,0], bss_fhr_boot_diff[:,2], color='k', alpha=0.2, lw=0)
if ptype=='auc':
ax2.set_ylim((0,0.3))
ax2.plot(range(1,37), auc_fhr_ml-auc_fhr_uh, marker='o', markersize=ms, markeredgecolor='black', markeredgewidth=0, markerfacecolor='white', linewidth=lw)
ax2.fill_between(range(1,37), auc_fhr_diff_boot[:,0], auc_fhr_diff_boot[:,2], color='k', alpha=0.2, lw=0)
plt.savefig('%s.pdf'%ptype)
def plot_2d_hist(predx, predy):
cmap = plt.get_cmap('Greys')
#norm = colors.BoundaryNorm(np.arange(0,1.1,0.1), ncolors=cmap.N, clip=True)
norm = colors.BoundaryNorm(np.logspace(0,6,num=10), ncolors=cmap.N, clip=True)
histox, bins = np.histogram(predx, bins=np.arange(0,1.1,0.1))
histoy, bins = np.histogram(predy, bins=np.arange(0,1.1,0.1))
plt.rcParams.update({'font.size': 14})
# 2D histogram figure
fig = plt.figure(figsize=(9,9))
h = plt.hist2d(predx, predy, bins=np.arange(0,1.01,0.025), cmin=1, cmap=cmap, norm=norm)
plt.style.use('seaborn-white')
plt.plot([0,1], [0,1], color='k')
plt.xlim((0,1))
plt.ylim((0,1))
plt.grid()
plt.xlabel('SSPF')
plt.ylabel('NN')
plt.savefig('hist2d.png')
# 2D histogram figure
fig = plt.figure(figsize=(8,8))
plt.style.use('seaborn-white')
n_sspf, bins, patches = plt.hist(predx, bins=np.arange(0,1.01,0.01), alpha=0.5, histtype='stepfilled', edgecolor='none', log=True)
n_ml, bins, patches = plt.hist(predy, bins=np.arange(0,1.01,0.01), alpha=0.5, histtype='stepfilled', edgecolor='none', log=True)
plt.grid()
plt.xlim((0,1))
plt.ylim((1,1e8))
plt.xlabel('Probability')
plt.ylabel('Number of grid points')
plt.savefig('hist_sspf.png')
#print((predx<0.0001).sum(), (predy<0.0001).sum())
#print(n_sspf, n_ml, n_ml/n_sspf)
#print(histox, histoy)
#print(np.histogram(predx-predy, bins=np.arange(-1,1.1,0.1)))
def plot_daily_bss_scatter(bss1, bss2):
plt.rcParams.update({'font.size': 14})
colormonth = np.where(np.isin(months_all, [4,5,6,7]), '#fc9272', '#9ecae1')
# read in and reorder cape removal time scale data
#all_cape_tscale = []
#for i in range(1,36):
# cape_tscale = np.genfromtxt('/glade/p/mmm/parc/schwartz/3vs1/environmental_stats/EAST_CONUS/data_cape_removal_time_scale_ncar_3km_12sec_ts_f%03d.txt'%i)
# all_cape_tscale.append(cape_tscale)
#cape_tscale = np.mean(all_cape_tscale, axis=0)
#cape_tscale = dict(list(zip(cape_tscale[:,0].astype(np.int).astype(np.str), cape_tscale[:,2])))
#dates_int = np.array([ datetime.datetime.strptime(d, '%Y-%m-%d %H:%M:%S').strftime('%Y%m%d%H') for d in unique_forecasts ])
#cape_tscale = [ cape_tscale[d] for d in dates_int ]
#cmap = plt.get_cmap('RdGy_r')
#norm = BoundaryNorm(np.arange(0,10), ncolors=cmap.N, clip=True)
# 2D histogram figure
fig = plt.figure(figsize=(8,8))
plt.style.use('seaborn-white')
#plt.scatter(bss1, bss2, marker='o', c=cape_tscale, cmap=cmap, norm=norm)
plt.scatter(bss1, bss2, marker='o', c='#AFAFAF')
plt.scatter(bss_all_ml, bss_all_uh, marker='o', s=30, c='black')
plt.plot([-1,1], [-1,1], color='0.4', lw=1)
plt.plot([-1,1], [0,0], color='0.4', lw=1)
plt.plot([0,0], [-1,1], color='0.4', lw=1)
plt.grid()
plt.xlim((-0.2,0.8))
plt.ylim((-0.2,0.8))
plt.xlabel('NNPF BSS')
plt.ylabel('SSPF BSS')
plt.savefig('bss_scatter.png')
def compute_reliability_all(obs, pred):
# if obs/pred are on grid, need to remove points outside of US mask
obs = obs.reshape((num_dates, num_fhr, -1))[:,:,thismask]
pred = pred.reshape((num_dates, num_fhr, -1))[:,:,thismask]
fcst_yes_bins, obs_yes_bins, fcst_bin_avg_prob = [], [], []
prob_bins = np.arange(0,1.06,0.05)
prob_bins = np.arange(0,1.01,0.1)
prob_bins_center = np.array((np.array(prob_bins) + 0.025)[:-1])
prob_bins_center = np.array((np.array(prob_bins) + 0.05)[:-1])
for i in range(0,prob_bins_center.size):
fcst_bin_mask = (pred >= prob_bins[i]) & (pred < prob_bins[i+1])
fcst_bin_sums = np.sum(fcst_bin_mask, axis=(1,2)) #[numdays]
fcst_bin_avg_prob.append( pred[fcst_bin_mask].mean() )
osr_hits = np.where(fcst_bin_mask, obs, 0)
obs_bin_sums = np.sum(osr_hits, axis=(1,2)) #[numdays]
fcst_yes_bins.append(fcst_bin_sums) #[numbins,numdays]
obs_yes_bins.append(obs_bin_sums) #[numbins,numdays]
#rel = (obs_bin_sums / fcst_bin_sums) #[numdays]
#true_prob.append(rel) #[numdays,numbins]
fcst_yes_bins, obs_yes_bins = np.array(fcst_yes_bins), np.array(obs_yes_bins)
rel = (obs_yes_bins.sum(axis=1) / fcst_yes_bins.sum(axis=1)) #need to sum over days
# need to transpose so array is [numdays,numbins]
cis = bootstrap_rel(fcst_yes_bins.T, obs_yes_bins.T)
return (rel, prob_bins_center, cis, fcst_yes_bins.sum(axis=1), fcst_bin_avg_prob)
def readSevereClimo(fname, day_of_year, hr):
from scipy.interpolate import RectBivariateSpline
data = np.load(fname)
awips = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution=None, area_thresh=10000.)
grid81 = awips.makegrid(93, 65, returnxy=True)
x, y = awips(data['lons'], data['lats'])
#spline = RectBivariateSpline(x[0,:], y[:,0], data['severe'][day_of_year-1,hr,:].T, kx=3, ky=3)
#interp_data = spline.ev(grid81[2].ravel(), grid81[3].ravel())
return np.reshape(interp_data, (65,93))
def make_gridded_forecast(predictions, labels, dates, fhr):
### reconstruct into grid by day (mask makes things more complex than a simple reshape)
gridded_predictions = np.zeros((num_dates,num_fhr,65*93), dtype=np.float64)
gridded_labels = np.zeros((num_dates,num_fhr,65*93), dtype=np.float64)
# just grid predictions for this class
predictions = predictions.reshape((num_dates, num_fhr, -1))
labels = labels.reshape((num_dates, num_fhr, -1))
for i, dt in enumerate(unique_forecasts):
for j, f in enumerate(unique_fhr):
gridded_predictions[i,j,thismask] = predictions[i,j,:]
gridded_labels[i,j,thismask] = labels[i,j,:]
#print(dt, gridded_predictions[i,:].max())
# return only predictions for US points
return (gridded_predictions.reshape((num_dates, num_fhr, 65, 93)), gridded_labels.reshape((num_dates, num_fhr, 65, 93)))
def grid_data(field):
# convert 1d array into 4d array with shape (num_dates, num_fhr, 65, 93)
gridded_field = np.zeros((num_dates,num_fhr,65*93), dtype=np.float64)
field = field.reshape((num_dates, num_fhr, -1))
for i, dt in enumerate(unique_forecasts):
for j, f in enumerate(unique_fhr):
gridded_field[i,j,thismask] = field[i,j,:]
return gridded_field.reshape((num_dates, num_fhr, 65, 93))
def smooth_gridded_forecast(predictions_gridded):
smoothed_predictions = []
dim = predictions_gridded.shape
for k,s in enumerate(smooth_sigma):
if len(dim) == 4: smoothed_predictions.append(gaussian_filter(predictions_gridded, sigma=[0,0,s,s]))
if len(dim) == 3: smoothed_predictions.append(gaussian_filter(predictions_gridded, sigma=[0,s,s]))
# return only predictions for US points
return np.array(smoothed_predictions)
def plot_bss_spatial(data2d, fname='bss_spatial.png'):
### PLOT bss ###
awips = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution='l', area_thresh=10000.)
fig, axes, m = pickle.load(open('data/rt2015_ch_CONUS.pk', 'rb'))
lons, lats = awips.makegrid(93, 65, returnxy=False)
x, y = m(lons, lats)
#test = readNCLcm('MPL_Greys')[35::] + [[1,1,1]] + readNCLcm('MPL_Reds')[20::]
test = readNCLcm('MPL_Greys')[45::] + [[1,1,1]] + readNCLcm('MPL_Reds')[30::]
cmap = ListedColormap(test)
norm = BoundaryNorm(np.arange(0,0.5,0.05), ncolors=cmap.N, clip=True)
norm = BoundaryNorm(np.arange(-0.25,0.25,0.05), ncolors=cmap.N, clip=True)
#norm = BoundaryNorm(np.arange(-0.05,0.06,0.01), ncolors=cmap.N, clip=True)
labels_gridded_summed = labels_gridded.sum(axis=(0,1)).flatten()
for i,b in enumerate(data2d.flatten()):
color = cmap(norm([b])[0])
if not np.isnan(b) and not np.isinf(b) and thismask[i] and labels_gridded_summed[i] > 25:
bss_val = int(round(b*100))
if bss_val > 99: bss_val = 99
if bss_val < -99: bss_val = -99
#if b<0: a = axes.text(x.flatten()[i], y.flatten()[i], '<0', fontsize=12, ha='center', va='center', family='monospace', color='#bdd7e7', fontweight='bold')
#else: a = axes.text(x.flatten()[i], y.flatten()[i], bss_val, fontsize=12, ha='center', va='center', family='monospace', color=color, fontweight='bold')
a = axes.text(x.flatten()[i], y.flatten()[i], bss_val, fontsize=12, ha='center', va='center', family='monospace', color=color, fontweight='bold')
plt.savefig(fname)
def plot_forecast(data2d, fname='forecast.png'):
awips = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution='l', area_thresh=10000.)
fig, axes, m = pickle.load(open('data/rt2015_ch_CONUS.pk', 'rb'))
lons, lats = awips.makegrid(93, 65, returnxy=False)
x, y = m(lons, lats)
#test = readNCLcm('MPL_Greys')[25::] + [[1,1,1]] + readNCLcm('MPL_Reds')[10::]
test = readNCLcm('MPL_Greys')[35::] + [[1,1,1]] + readNCLcm('MPL_Reds')[20::]
cmap = ListedColormap(test)
norm = BoundaryNorm(np.arange(0,1.1,0.1), ncolors=cmap.N, clip=True)
labels_flatten = np.amax(labels_gridded[fmask,:], axis=0).flatten()
x, y = x.flatten(), y.flatten()
for i,b in enumerate(data2d.flatten()):
color = cmap(norm([b])[0])
if labels_flatten[i]: axes.scatter(x[i], y[i], color='black', marker='o', s=13**2, lw=1, facecolors='None', edgecolors='0.6')
if not np.isnan(b) and not np.isinf(b) and thismask[i] and b>0.05:
#if not np.isnan(b) and not np.isinf(b) and thismask[i] and b>5:
#val = int(round(b))
val = int(round(b*100))
#if val > 99: val = 99
#if val < -99: val = -99
a = axes.text(x[i], y[i], val, fontsize=10, ha='center', va='center', family='monospace', color=color, fontweight='bold')
plt.savefig(fname, dpi=150)
def plot_forecast_old(predictions, prefix="", fhr=36):
test = readNCLcm('MPL_Greys')[25::] + [[1,1,1]] + readNCLcm('MPL_Reds')[10::]
#test = readNCLcm('perc2_9lev')[1::]
cmap = ListedColormap(test)
#cmap = plt.get_cmap('RdGy_r')
norm = BoundaryNorm(np.arange(0,1.1,0.1), ncolors=cmap.N, clip=True)
print(predictions)
#awips = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution='l', area_thresh=10000.)
#fig, axes, m = pickle.load(open('/glade/u/home/sobash/NSC_scripts/ch_pk_files/rt2015_ch_CONUS.pk', 'r'))
#fig, axes, m = pickle.load(open('/glade/u/home/sobash/NSC_scripts/dav_pk_files/rt2015_ch_CONUS.pk', 'rb'))
fig, axes, m = pickle.load(open('data/rt2015_ch_CONUS.pk', 'rb'))
lats, lons = predictions['lat'].values, predictions['lon'].values
x, y = m(lons, lats)
# do something convoluted here to only plot each point once
probmax = {}
for i,p in enumerate(predictions['predict_proba'].values):
thiskey = '%f%f'%(lats[i],lons[i])
if thiskey in probmax:
if p > probmax[thiskey]:
probmax[thiskey] = p
else:
probmax[thiskey] = p
# need to do this before calling text
#m.set_axes_limits(ax=axes)
for i,p in enumerate(predictions['predict_proba'].values):
thiskey = '%f%f'%(lats[i],lons[i])
thisvalue = probmax[thiskey]
color = cmap(norm([thisvalue])[0])
probmax[thiskey] = -999
if x[i] < m.xmax and x[i] > m.xmin and y[i] < m.ymax and y[i] > m.ymin and thisvalue > 0.05:
#if thisvalue >= 0.15:
a = axes.text(x[i], y[i], int(round(thisvalue*100)), fontsize=10, ha='center', va='center', family='monospace', color=color, fontweight='bold')
# a = axes.text(x[i], y[i], int(round(thisvalue*100)), fontsize=12, ha='center', va='center', family='monospace', color=color, fontweight='bold')
#a = m.scatter(x, y, s=50, c=predictions['predict_proba'].values, lw=0.5, edgecolors='k', cmap=cmap, norm=norm)
ax = plt.gca()
cdate = sdate + dt.timedelta(hours=fhr)
sdatestr = (cdate - dt.timedelta(hours=2)).strftime('%Y-%m-%d %H:%M:%S UTC')
edatestr = (cdate + dt.timedelta(hours=2)).strftime('%Y-%m-%d %H:%M:%S UTC')
plt.text(0,1.01,'Probability of tornado within 75-mi of a point valid %s - %s'%(sdatestr, edatestr), fontsize=14, transform=ax.transAxes)
# ADD COLORBAR
#cax = fig.add_axes([0.02,0.1,0.02,0.3])
#cb = plt.colorbar(a, cax=cax, orientation='vertical', extendfrac=0.0)
#cb.outline.set_linewidth(0.5)
#cb.ax.tick_params(labelsize=10)
# plot reflectivity
initstr = sdate.strftime('%Y%m%d00')
wrfcdate = cdate.strftime('%Y-%m-%d_%H_%M_%S')
fh = Dataset('/glade/p/mmm/parc/sobash/NSC/3KM_WRF_POST_12sec_ts/%s/diags_d01_%s.nc'%(initstr,wrfcdate), 'r')
lats = fh.variables['XLAT'][0,:]
lons = fh.variables['XLONG'][0,:]
cref = fh.variables['REFL_COM'][0,:]
fh.close()
x, y = m(lons, lats)
plt.contourf(x, y, cref, levels=[35,1000], colors='k', alpha=0.5)
plt.savefig('forecast%s.png'%prefix, dpi=150)
# COMPUTE bss
# (469,36,65,93) input dimension
def compute_bss_spatial(pred, obs):
bs_spatial = (pred - obs)**2
# use climo per grid box
#climo = labels_gridded.mean(axis=(0,1)) #take mean over days and forecast hour
#climo = uniform_filter(climo, size=3) #take mean within 1 grid box
#bs_climo = (climo[np.newaxis,np.newaxis,:] - labels_gridded)**2
#use 30-year climo
bs_climo = ( climo_all - obs )**2
bs_climo = bs_climo.mean(axis=(0,1))
bs_climo = uniform_filter(bs_climo, size=3)
# compute brier skill score for each grid box
bs_spatial = bs_spatial.mean(axis=(0,1)) #aggregate num fcst/fhr dimensions
bs_spatial = uniform_filter(bs_spatial, size=3)
bss_spatial = 1 - (bs_spatial / bs_climo)
return bss_spatial
def compute_bss_daily(pred, obs):
diffs = (pred - obs)**2
diffs = diffs.reshape((num_dates,num_fhr,-1))[:,:,thismask]
#diffs = diffs[:,12,:][:,np.newaxis,:]
bs_daily = diffs.mean(axis=(1,2))
# use 30-year climo
climo_diffs = ( climo_all - obs )**2
climo_diffs = climo_diffs.reshape((num_dates,num_fhr,-1))[:,:,thismask]
#climo_diffs = climo_diffs[:,12,:][:,np.newaxis,:]
bs_climo_daily = np.mean( climo_diffs, axis=(1,2) )
# compute brier skill score for each grid box
bss_daily = 1 - (bs_daily / bs_climo_daily)
return bss_daily
def createCI(data, B, quantile):
data.sort()
index_low = int(B*(quantile/2.0)-1)
index_high = int(B*(1-(quantile/2.0))-1)
index_middle = int((B/2.0)-1)
ci_low = data[index_low]
ci_high = data[index_high]
bs_mean = data[index_middle]
bs_median = np.median(data)
return (ci_low, bs_mean, ci_high, bs_median)
def bootstrap_rel(fcst_yes, obs_yes, alpha=0.9, B=10000):
#fcst_yes has shape [numdays,numbins]
#obs_yes has shape [numdays,numbins]
n = fcst_yes.shape[0]
bins = fcst_yes.shape[1]
idx = np.random.randint(0, n, (B,n))
fcst_yes_draw = fcst_yes[idx,:] #shape becomes [B,numdays,numbins]
obs_yes_draw = obs_yes[idx,:]
print(fcst_yes_draw.shape, obs_yes_draw.shape)
# sum over number of days
fcst_yes_draw_sum = np.sum(fcst_yes_draw, axis=1)
obs_yes_draw_sum = np.sum(obs_yes_draw, axis=1)
rel = obs_yes_draw_sum/fcst_yes_draw_sum
cis = []
for k in range(bins):
cis.append(createCI(rel[:,k], B, 1-alpha))
return np.array(cis)
def bootstrap_bss(bss1=None, bss2=None, alpha=0.9, B=10000):
bs, bs_ref = bss1
n = bs.size
idx = np.random.randint(0, n, (B,n))
bs_draw = bs[idx]
bs_ref_draw = bs_ref[idx]
bs_sum = np.sum(bs_draw, axis=1)
bs_ref_sum = np.sum(bs_ref_draw, axis=1)
bss = (1 - (bs_sum/bs_ref_sum))
if bss2 is not None:
bs, bs_ref = bss2
bs_draw = bs[idx]
bs_ref_draw = bs_ref[idx]
bs_sum = np.sum(bs_draw, axis=1)
bs_ref_sum = np.sum(bs_ref_draw, axis=1)
bss2 = (1 - (bs_sum/bs_ref_sum))
stat = bss2 - bss
else:
stat = bss
return createCI(stat, B, 1-alpha)
def roc_auc_score_parallel(a):
auc = metrics.roc_auc_score(obs_draw[a,:], fcst_draw[a,:])
return auc
def bootstrap_auc(auc1=None, auc2=None, alpha=0.99, B=10000):
obs, fcst = auc1
n = fcst.shape[0]
idx = np.random.randint(0, n, (B,n))
global fcst_draw
global obs_draw
fcst_draw = fcst[idx,:].reshape((B,-1))
obs_draw = obs[idx,:].reshape((B,-1))
nprocs = 30
chunksize = int(math.ceil(B / float(nprocs)))
pool = multiprocessing.Pool(processes=nprocs)
aucs = pool.map(roc_auc_score_parallel, range(0,B), chunksize)
pool.close()
#for a in range(0,B):
#auc = metrics.roc_auc_score(obs_draw[a,:].flatten(), fcst_draw[a,:].flatten())
#aucs.append(auc)
if auc2 is not None:
obs2, fcst2 = auc2
# use same idx here so they are paired
fcst_draw = fcst2[idx,:].reshape((B,-1))
obs_draw = obs2[idx,:].reshape((B,-1))
pool = multiprocessing.Pool(processes=nprocs)
aucs2 = pool.map(roc_auc_score_parallel, range(0,B), chunksize)
pool.close()
#aucs2 = []
#for a in range(0,B):
# auc = metrics.roc_auc_score(fcst_draw[a,:].flatten(), obs_draw[a,:].flatten())
# aucs2.append(auc)
stat = np.array(aucs2) - np.array(aucs)
else:
stat = aucs
return createCI(np.array(stat), B, 1-alpha)
def compute_bss_fhr(pred, obs):
diffs = (pred - obs)**2
obs_gridded_masked = obs.reshape((num_dates, num_fhr, -1))[:,:,thismask]
# compute climo by forecast hour
climo_by_fhr = np.mean( obs_gridded_masked, axis=(0,2) )
climo_diffs = ( obs_gridded_masked - climo_by_fhr[np.newaxis,:,np.newaxis] )**2
bs_climo_by_fhr = np.mean( climo_diffs, axis=(0,2) )
#print(climo_by_fhr)
# use 30-year climo
climo_diffs = ( climo_all - obs )**2
climo_diffs = climo_diffs.reshape((num_dates,num_fhr,-1))[:,:,thismask]
bs_climo_by_fhr = np.mean( climo_diffs, axis=(0,2) )
# compute brier skill score for each forecast hour
diffs = diffs.reshape((num_dates,num_fhr,-1))[:,:,thismask]
bs_fhr = diffs.mean(axis=(0,2)) #average over days and space
bss_fhr = 1 - (bs_fhr / bs_climo_by_fhr)
bss_boot_all = []
for n,f in enumerate(range(sfhr,efhr+1)):
bss_fhr_bs = bootstrap_bss(( diffs[:,n,:].sum(axis=1), climo_diffs[:,n,:].sum(axis=1) ))
bss_boot_all.append(bss_fhr_bs)
print(f, bss_fhr_bs)
return ( bss_fhr , np.array(bss_boot_all), diffs, climo_diffs )
def compute_bss(pred, obs):
# compute climo by forecast hour
#obs_gridded_masked = obs.reshape((num_dates, num_fhr, -1))[:,:,thismask]
#climo_by_fhr = np.mean( obs_gridded_masked, axis=(0,2) )
#climo_diffs = ( obs_gridded_masked - climo_by_fhr[np.newaxis,:,np.newaxis] )**2
#bs_climo_by_fhr = np.mean( climo_diffs, axis=(0,2) )
#print(climo_by_fhr)
# compute 30-year climo brier score
climo_diffs = ( climo_all - obs )**2
climo_diffs = climo_diffs.reshape((num_dates,num_fhr,-1))[:,:,thismask]
bs_climo = climo_diffs.mean()
# compute forecast brier score
fcst_diffs = ( pred - obs )**2
fcst_diffs = fcst_diffs.reshape((num_dates,num_fhr,-1))[:,:,thismask]
bs_fcst = fcst_diffs.mean()
# compute brier skill score
return (1 - (bs_fcst / bs_climo))
def compute_auc_fhr(pred, obs, pred2=None, obs2=None):
obs_masked = obs.reshape((num_dates, num_fhr, -1))[:,:,thismask].astype(np.float32)
pred_masked = pred.reshape((num_dates, num_fhr, -1))[:,:,thismask].astype(np.float32)
if pred2 is not None:
obs2_masked = obs2.reshape((num_dates, num_fhr, -1))[:,:,thismask].astype(np.float32)
pred2_masked = pred2.reshape((num_dates, num_fhr, -1))[:,:,thismask].astype(np.float32)
auc_all, auc_bs_all = [], []
for f in range(num_fhr):
#fpr, tpr, thresholds = metrics.roc_curve(obs_masked[:,f,:].flatten(), pred_masked[:,f,:].flatten())
if pred2 is None:
auc = metrics.roc_auc_score(obs_masked[:,f,:].flatten(), pred_masked[:,f,:].flatten())
auc_all.append(auc)
auc_bs = bootstrap_auc((obs_masked[:,f,:], pred_masked[:,f,:]), B=1000)
auc_bs_all.append(auc_bs)
print(datetime.datetime.now(), f, auc, auc_bs)
else:
auc_bs = bootstrap_auc( (obs_masked[:,f,:], pred_masked[:,f,:]),\
(obs2_masked[:,f,:], pred2_masked[:,f,:]), B=1000)
auc_bs_all.append(auc_bs)
print(datetime.datetime.now(), f, auc_bs)
return (np.array(auc_all), np.array(auc_bs_all))
#return (np.array(auc_bs_all)[:,1], np.array(auc_bs_all))
def compute_auc_fhr_old(pred, obs):
obs_masked = obs.reshape((num_dates, num_fhr, -1))[:,:,thismask]
pred_masked = pred.reshape((num_dates, num_fhr, -1))[:,:,thismask]
prob_thresh = np.arange(0,1.01,0.02)
for f in range(num_fhr):
pod_all, pofd_all = [], []
for p in prob_thresh:
cm = metrics.confusion_matrix(obs_masked[:,f,:].flatten(), (pred_masked[:,f,:]>=p).flatten())
hits, fals, miss, neg = cm[1,1], cm[0,1], cm[1,0], cm[0,0]
pod = hits / ( hits + miss )
pofd = fals / ( neg + fals )
pod, pofd = np.nan_to_num(pod), np.nan_to_num(pofd)
pod_all.append(pod)
pofd_all.append(pofd)
auc = 0
for i in range(prob_thresh.size-1):
auc += ((pod_all[i] + pod_all[i+1])/2.0)*(pofd_all[i]-pofd_all[i+1])
print(auc)
def compute_auc_all(pred, obs):
obs_masked = obs.reshape((num_dates, num_fhr, -1))[:,:,thismask]
pred_masked = pred.reshape((num_dates, num_fhr, -1))[:,:,thismask]
fpr, tpr, thresholds = metrics.roc_curve(obs_masked.flatten(), pred_masked.flatten())
#fig, ax = plt.subplots()
#ax.plot(fpr, tpr)
#ax.grid()
#fig.savefig("roc.png")
return metrics.roc_auc_score(obs_masked.flatten(), pred_masked.flatten())
def compute_2d_histo(pred, obs, fname='histo2d.png'):
#idx = np.nonzero(obs) #should be 4d (days, fhr, ny, nx)
prob_histo_fcst = np.zeros((20,20))
num_rpts = 0
for d,f,y,x in list(zip(*np.nonzero(obs))):
sx = x-10
ex = x+10
sy = y-10
ey = y+10
if sx < 0: sx =0
if ex > 92: ex=92
if sy < 0: sy=0
if ey > 64: ey=64
if f in [10,11,12,13,14]:
prob_histo_fcst += pred[d,f,sy:ey,sx:ex]
num_rpts += 1
frequency = prob_histo_fcst / float(num_rpts)
return frequency
def output_csv():
# output 80-km grid locations
#awips = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution=None, area_thresh=10000.)
#lons, lats = awips.makegrid(93, 65)
#np.savetxt('grid.out', np.array([lons.flatten(), lats.flatten(), thismask]).T, fmt='%.3f,%.3f,%.0d', header='lon,lat,mask')
all_probs = []
for i in range(6):
print(i)
predictions_gridded, labels_gridded = make_gridded_forecast(predictions_all[:,i], labels_all[:,i], dates_all, fhr_all)
all_probs.append(predictions_gridded)
all_probs.append(predictions_gridded_uh_smoothed[0,:]) #append smoothed UH forecasts
all_probs = np.array(all_probs)
fmask = np.where( (unique_forecasts == '2011-04-27 00:00:00') )[0][0]
idxarray = np.tile(np.arange(0,93*65)[np.newaxis,:], (36,1)).flatten()
fhrarray = np.tile(np.arange(1,37)[:,np.newaxis], (1,93*65)).flatten()
usmask = np.tile(thismask[np.newaxis,:], (36,1)).flatten()
all_probs = 100*all_probs[:,fmask,:,:].reshape((7,-1)) #should become (7,36*93*65)
all_probs = np.where(all_probs<1, 0, all_probs)
# want to only include areas where ANY prob is non-zero and within US mask area (smoothed UH likely has probs outside of US, maybe ML too)
probmask = ( np.any(all_probs, axis=0) & usmask )
np.savetxt('test2.out', np.array([idxarray[probmask], fhrarray[probmask], all_probs[0,probmask], all_probs[1,probmask], all_probs[2,probmask], all_probs[3,probmask], all_probs[4,probmask], all_probs[5,probmask], all_probs[6,probmask]]).T,\
delimiter=',', fmt='%.0d', comments='', header='idx,fhr,psvr,pwind,phail,ptorn,psighail,psigwind,puh')
#probarray =100*predictions_gridded[fmask,:,:].flatten()
#probmask = (probarray >= 1)
#np.savetxt('test.out', np.array([idxarray[probmask], fhrarray[probmask], probarray[probmask]]).T, delimiter=',', fmt='%.0d', header='idx,fhr,prob')
def apply_optimal_UH():
# compute binary grid where UH exceeds spatially and temporally varying UH optimal threshold
predictions_gridded_uh, labels_gridded = make_gridded_forecast(uh120_all, labels_all[:,hazard_idx], dates_all, fhr_all)
optimal_uh_warmseason, num_rpts_warm = pickle.load(open('./trained_models_paper/optimal_uh_warmseason', 'rb'))
optimal_uh_coolseason, num_rpts_cool = pickle.load(open('./trained_models_paper/optimal_uh_coolseason', 'rb'))
this_months_all = months_all.reshape((num_dates, num_fhr, -1))
this_months_all = this_months_all[:,0,0]
uh_binary = []
for k,m in enumerate(this_months_all):
if m in [4,5,6,7]: this_uh = ( predictions_gridded_uh[k,:] >= optimal_uh_warmseason )
else: this_uh = ( predictions_gridded_uh[k,:] >= optimal_uh_coolseason )
this_uh = this_uh.reshape((num_fhr,-1))[:,thismask]
uh_binary.append(this_uh)
uh_binary = np.array(uh_binary).flatten()
##########################
### SET VARIABLES HERE ###
classes = { 0:'all', 1:'wind', 2:'hailone', 3:'torn', 4:'sighail', 5:'sigwind'}
hazard_idx = 0
numclasses = 6
compute_optimal_uh = True
print(classes[hazard_idx])
smooth_sigma = [0,0.25,0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.5,3.0]
smooth_sigma = [2.0]
sfhr, efhr = 1, 36
#fcst_file = './trained_models_paper/predictions_nn_40km_2hr_all'
fcst_file = 'predictions_nn_40km_2hr_NSC3km-12sec'
#fcst_file = '/glade/work/ahijevyc/NSC_objects/predictions_nn_40km_2hr_basic_neighborhood.0latlon_hash_buckets.2015043000-2017122900.train.20152016.mem1.predict.2017.mem9.pk'
#fcst_file = 'predictions_nn_40km_2hr_NSC3km-12sec_all'
#fcst_file = 'predictions_rf_40km_2hr_rt2020_test'
#fcst_file2 = 'predictions_rf_120km_2hr_rt2020'
#fcst_file = 'predictions_nn_120km_2hr_uhonly_all'
#fcst_file = 'predictions_nn_120km_2hr_envonly_all'
#fcst_file = 'predictions_nn_120km_2hr_basicplus_all'
climo_file = 'climo_severe_40km_2hr.npz'
#climo_file = 'climo_severe_120km_2hr_torn.npz'
##########################
#############################
### READ AND PROCESS DATA ###
print('reading data')
mask = pickle.load(open('/glade/u/home/sobash/2013RT/usamask.pk', 'rb'))
thismask = mask.flatten()
# not converting to float32 due to small changes in computations?
#all_predictions = []
#for mem in range(3,4):
# print(mem)
# fcst_file = '/glade/work/ahijevyc/NSC_objects/predictions_nn_40km_2hr_basic_neighborhood.0latlon_hash_buckets.2015043000-2017122900.train.20152016.mem1.predict.2017.mem%d.pk'%mem
# predictions_all_nn, labels_all, fhr_all, cape_all, shear_all, uh_all, uh120_all, uh01_all, dates_all = pickle.load(open(fcst_file, 'rb'))
# all_predictions.append(predictions_all_nn)
#predictions_all_nn = np.array(all_predictions)
#predictions_all_nn = np.mean(predictions_all_nn, axis=0)
predictions_all_nn, labels_all, fhr_all, cape_all, shear_all, uh_all, uh120_all, dates_all = pickle.load(open(fcst_file, 'rb'))
predictions_all = predictions_all_nn
# read in UH01 forecasts in separate file
#uh120_all = pickle.load(open('predictions_nn_40km_2hr_uh01_NSC1km_v2', 'rb'))
#uh120_all = np.zeros((predictions_all_nn.shape[0]))
#print(uh120_all.shape)
unique_forecasts, unique_fhr = np.unique(dates_all), np.unique(fhr_all)
num_dates, num_fhr = len(unique_forecasts), len(unique_fhr)
print('making date arrays')
dates_dt = np.array([ datetime.datetime.strptime(d, '%Y-%m-%d %H:%M:%S') for d in unique_forecasts ])
months_all = np.array([ d.month for d in dates_dt ])
doy_unique = np.array([ d.timetuple().tm_yday for d in dates_dt ])
dates_dt = np.repeat(dates_dt, num_fhr*65*93).reshape((num_dates,num_fhr,65,93))
months_all = np.repeat(months_all, num_fhr*65*93).reshape((num_dates,num_fhr,65,93))
doy_all = np.repeat(doy_unique, num_fhr*65*93).reshape((num_dates,num_fhr,65,93))
print('reading climo')
data = np.load(climo_file)
climo = data['severe'][:]
climo_all = []
for doy in doy_unique:
arr3 = np.append( climo[doy,:,:,:], climo[doy+1,:12,:,:], axis=0 )
climo_all.append(arr3)
climo_all = np.array(climo_all)
#predictions_all = (predictions_all_nn + predictions_all_rf) / 2.0
predictions_all = predictions_all_nn
##############################w
print('Verifying %d forecast points'%predictions_all.shape[0])
# compute binary grid where UH exceeds spatially and temporally varying UH optimal threshold
#if compute_optimal_uh: apply_optimal_UH()
### convert lists to grids to enable smoothing, and then smooth UH forecasts
print('computing BSS for UH forecasts')
#predictions_gridded_uh, labels_gridded = make_gridded_forecast((uh120_all>20).astype(np.int32), labels_all[:,hazard_idx], dates_all, fhr_all)
#predictions_gridded_uh, labels_gridded = make_gridded_forecast((uh120_all>150).astype(np.int32), labels_all[:,hazard_idx], dates_all, fhr_all)
predictions_gridded_uh, labels_gridded = make_gridded_forecast((uh120_all>75).astype(np.int32), labels_all[:,hazard_idx], dates_all, fhr_all)
#predictions_gridded_uh, labels_gridded = make_gridded_forecast((uh_binary).astype(np.int32), labels_all[:,hazard_idx], dates_all, fhr_all)
predictions_gridded_uh_smoothed = smooth_gridded_forecast(predictions_gridded_uh)
predictions_gridded, labels_gridded = make_gridded_forecast(predictions_all[:,hazard_idx], labels_all[:,hazard_idx], dates_all, fhr_all)
# smooth ML forecast
#smooth_sigma = [0.5]
#predictions_gridded = smooth_gridded_forecast(predictions_gridded)[0]
### filter predictions by forecast hour
num_fhr = (efhr - sfhr) + 1
climo_all = climo_all[:,sfhr-1:efhr,:]
predictions_gridded, labels_gridded = predictions_gridded[:,sfhr-1:efhr,:], labels_gridded[:,sfhr-1:efhr,:]
predictions_gridded_uh = predictions_gridded_uh[:,sfhr-1:efhr,:]
predictions_gridded_uh_smoothed = predictions_gridded_uh_smoothed[:,:,sfhr-1:efhr,:]
#print('outputting forecasts')
#output_csv()
#sys.exit()
### apply lower threshold to predictions
predictions_gridded_uh_smoothed = np.where(predictions_gridded_uh_smoothed<0.001, 0.0, predictions_gridded_uh_smoothed)
### compute verification statistics
bss_fhr_uh, bss_fhr_uh_boot, diffs_uh, diffs_climo = compute_bss_fhr( predictions_gridded_uh_smoothed[0,:], labels_gridded )
bss_spatial_uh = compute_bss_spatial( predictions_gridded_uh_smoothed[0,:], labels_gridded )
#auc_fhr_uh = compute_auc_fhr_old( predictions_gridded_uh_smoothed[0,:], labels_gridded )
#auc_fhr_uh, auc_fhr_uh_boot = compute_auc_fhr( predictions_gridded_uh_smoothed[0,:], labels_gridded )
auc_all_uh = compute_auc_all( predictions_gridded_uh_smoothed[0,:], labels_gridded )
bss_all_uh = compute_bss( predictions_gridded_uh_smoothed[0,:], labels_gridded )
#true_prob_uh, fcst_prob_uh = calibration_curve(labels_gridded.flatten(), predictions_gridded_uh_smoothed[0,:].flatten(), n_bins=10)
true_prob_uh, fcst_prob_uh, boot_rel_uh, fcst_bin_sums_uh, avg_prob_uh = compute_reliability_all(labels_gridded.flatten(), predictions_gridded_uh_smoothed[0,:].flatten())
### compute BSS for ML predictions
print('computing BSS for ML forecasts')
#apply lower threshold to predictions
predictions_gridded = np.where(predictions_gridded<0.001, 0.0, predictions_gridded)
predictions_all = np.where(predictions_all<0.001, 0.0, predictions_all)
#compute BSS/AUC
bss_fhr_ml, bss_fhr_ml_boot, diffs_ml, diffs_climo = compute_bss_fhr(predictions_gridded, labels_gridded)
bss_spatial_ml = compute_bss_spatial(predictions_gridded, labels_gridded)
#auc_fhr_ml, auc_fhr_ml_boot = compute_auc_fhr(predictions_gridded, labels_gridded)
auc_all_ml = compute_auc_all(predictions_gridded, labels_gridded)
bss_all_ml = compute_bss(predictions_gridded, labels_gridded)
#true_prob_ml, fcst_prob_ml = calibration_curve(labels_gridded.flatten(), predictions_gridded.flatten(), n_bins=10)
true_prob_ml, fcst_prob_ml, boot_rel_ml, fcst_bin_sums_ml, avg_prob_ml = compute_reliability_all(labels_gridded.flatten(), predictions_gridded.flatten())
bss_spatial_diff = bss_spatial_ml - bss_spatial_uh
print(bss_fhr_ml)
print('AUC ALL FHR UH/ML:', auc_all_uh, auc_all_ml)
print('BSS ALL FHR UH/ML:', bss_all_uh, bss_all_ml)
print('reliability for ML')
for a,p in enumerate(avg_prob_ml): print('%.3f, %.3f, %d'%(p, true_prob_ml[a], fcst_bin_sums_ml[a]))
print(repr(boot_rel_ml))
print('reliability for UH')
for a,p in enumerate(avg_prob_uh): print('%.3f, %.3f, %d'%(p, true_prob_uh[a], fcst_bin_sums_uh[a]))
print(repr(boot_rel_uh))
print(labels_gridded.mean())
#freq_uh = compute_2d_histo(predictions_gridded_uh_smoothed[0,:], labels_gridded, 'histo2d_uh.png')
#freq_ml = compute_2d_histo(predictions_gridded, labels_gridded, 'histo2d_ml.png')
#cmap = plt.get_cmap('RdBu_r')
#norm = colors.BoundaryNorm(np.arange(-0.05,0.06,0.01), ncolors=cmap.N, clip=True)
#plt.imshow(freq_ml-freq_uh,interpolation='nearest',cmap = cmap, norm=norm)
#plt.savefig('hist2d.png')
### compute average difference of ML-SSPF forecast
average_diff = (predictions_gridded - predictions_gridded_uh).mean(axis=(0))
### compute BSS bootstrapped diffs ###
### bootstrap_bss takes a list of daily values (e.g., 497 forecasts)
bss_fhr_boot_diff, auc_fhr_boot_diff = [], []
for n,f in enumerate(range(sfhr,efhr+1)):
bss_fhr_bs = bootstrap_bss( ( diffs_uh[:,n,:].sum(axis=1), diffs_climo[:,n,:].sum(axis=1) ), \
( diffs_ml[:,n,:].sum(axis=1), diffs_climo[:,n,:].sum(axis=1) ) )
bss_fhr_boot_diff.append(bss_fhr_bs)
print(f, bss_fhr_bs)
bss_fhr_boot_diff = np.array(bss_fhr_boot_diff)
plot_stats_hourly(ptype='bss')
plot_bss_spatial(bss_spatial_diff, 'bss_spatial_diff.png') #takes 2d array to plot
plot_bss_spatial(bss_spatial_ml, 'bss_spatial_ml.png') #takes 2d array to plot
plot_bss_spatial(bss_spatial_uh, 'bss_spatial_uh.png') #takes 2d array to plot
sys.exit()
### compute ROCA bootstrapped diffs ###
auc_fhr_diff, auc_fhr_diff_boot = compute_auc_fhr( predictions_gridded_uh_smoothed[0,:], labels_gridded ,
predictions_gridded, labels_gridded )
### plot BSS and ROCA timeseries ###
plot_stats_hourly(ptype='bss')
plot_stats_hourly(ptype='auc')
sys.exit()
### compute daily BSS ###
bss_daily_ml = compute_bss_daily(predictions_gridded, labels_gridded)
bss_daily_uh = compute_bss_daily(predictions_gridded_uh_smoothed[0,:], labels_gridded)
bss_daily_diff = bss_daily_ml - bss_daily_uh
# these code blocks below compute spatial or daily BSS for fixed UH thresholds
# compute BSS on spatial grid for fixed UH threshold
#bss_spatial_all = []
#for uh in range(30,90,10):
# print(uh)
# predictions_gridded_uh, labels_gridded = make_gridded_forecast((uh120_all>uh).astype(np.int32), labels_all[:,i], dates_all, fhr_all#)
# predictions_gridded_uh_smoothed = smooth_gridded_forecast(predictions_gridded_uh)
# bss_spatial = compute_bss_spatial(predictions_gridded_uh_smoothed[0,:], labels_gridded)
# bss_spatial_all.append(bss_spatial)
#bss_spatial = np.array(bss_spatial_all)
#bss_spatial = np.where(bss_spatial > 1, -999, bss_spatial)
#bss_spatial = np.where(bss_spatial < -1, -999, bss_spatial)
#bss_spatial = np.amax(bss_spatial, axis=0)
### compute daily BSS with daily varying UH threshold ###
#bss_daily_uh_fixed_all = []
#for uh in range(10,50,10):
# print(uh)
# predictions_gridded_uh, labels_gridded = make_gridded_forecast((uh120_all>uh).astype(np.int32), labels_all[:,i], dates_all, fhr_all)
# predictions_gridded_uh_smoothed = smooth_gridded_forecast(predictions_gridded_uh)
#
# fmask = np.where( (unique_forecasts == '2012-12-19 00:00:00') )[0][0]
# plot_forecast( np.amax( predictions_gridded_uh_smoothed[0,fmask,:], axis=0 ) , 'predictions_uh%d.png'%uh )
#
# bss_daily_uh_fixed = compute_bss_daily(predictions_gridded_uh_smoothed[0,:], labels_gridded)
# bss_daily_uh_fixed_all.append(bss_daily_uh_fixed)
#
# print(bss_daily_uh_fixed[fmask])
#bss_daily_uh_fixed = np.amax(bss_daily_uh_fixed_all, axis=0)
### print out daily BSS
for d in range(num_dates):
#print(unique_forecasts[d], bss_daily_ml[d], bss_daily_uh[d], bss_daily_diff[d], bss_daily_uh_fixed[d])
print(unique_forecasts[d], bss_daily_ml[d], bss_daily_uh[d], bss_daily_diff[d])
print('UH better than ML:', num_dates, (bss_daily_diff>0).sum())
### plot stuff here
preduh = predictions_gridded_uh_smoothed[0,:].reshape((num_dates,num_fhr,-1))[:,:,thismask]
plot_2d_hist(preduh.flatten(), predictions_all[:,hazard_idx])
plot_daily_bss_scatter(bss_daily_ml, bss_daily_uh)
# plot forecasts for given date
fmask = np.where( (unique_forecasts == '2012-12-19 00:00:00') )[0][0]
#fmask = np.where( (unique_forecasts == '2012-07-01 00:00:00') )[0][0]
plot_forecast( np.amax( predictions_gridded_uh_smoothed[0,fmask,:], axis=0 ) , 'predictions_uh.png' )
#print(bss_daily_uh[fmask])
plot_forecast( np.amax( predictions_gridded[fmask,:], axis=0 ), 'predictions_ml.png' )
#print(bss_daily_ml[fmask])
#gridded_uh_values = grid_data(uh_all)
#plot_forecast( np.amax( gridded_uh_values[fmask,:], axis=0 ), 'gridded_uh.png' )