diff --git a/README.md b/README.md
index deaf985..6be410a 100644
--- a/README.md
+++ b/README.md
@@ -15,10 +15,11 @@ You can install `metricsifter` package from PyPI via `pip install metricsifter`.
from metricsifter.sifter import Sifter
from tests.sample_gen.generator import generate_synthetic_data
-## Prepare time series data
+## Create time series data
normal_data, abonormal_data, _, _, anomalous_nodes = generate_synthetic_data(num_node=20, num_edge=20, num_normal_samples=55, num_abnormal_samples=15, anomaly_type=0)
data = pd.concat([normal_data, abonormal_data], axis=0, ignore_index=True)
+## Remove the variables of time series data
sifter = Sifter(penalty_adjust=2.0, n_jobs=1)
sifted_data = sifter.run(data=data)
print("(#removed metrics) / (#total metrics):", len(set(data.columns) - set(siftered_data.columns)), "/", len(data.columns))
@@ -28,8 +29,8 @@ assert set(sifted_data.columns) - anomalous_nodes == set()
The example of original synthetic data and its sifted data is shown in the following figure.
-![original synthetic data](./docs/images/original_time_series.png)
-![sifted synthetic data](./docs/images/sifted_time_series.png)
+
+
## For developers