-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathKFW_panelResults_Max_Pre2001.r
216 lines (173 loc) · 11.9 KB
/
KFW_panelResults_Max_Pre2001.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#-------------------------------------------------
#-------------------------------------------------
#Panel Models - KFW
#Testing in Cross Section the impact of being treated BEFORE March, 2001
#On the Mean Level of NDVI, measured as the yearly mean NDVI value (LTDR)
#-------------------------------------------------
#-------------------------------------------------
library(devtools)
devtools::install_github("itpir/SAT@master")
library(SAT)
library(stargazer)
library(lmtest)
library(multiwayvcov)
loadLibs()
#-------------------------------------------------
#-------------------------------------------------
#Load in Processed Data - produced from script KFW_dataMerge.r
#-------------------------------------------------
#-------------------------------------------------
shpfile = "processed_data/kfw_analysis_inputs.shp"
dta_Shp = readShapePoly(shpfile)
#-------------------------------------------------
#-------------------------------------------------
#Pre-processing to create cross-sectional variable summaries
#-------------------------------------------------
#-------------------------------------------------
#Calculate NDVI Trends
dta_Shp$pre_trend_NDVI_mean <- timeRangeTrend(dta_Shp,"MeanL_[0-9][0-9][0-9][0-9]",1982,1995,"SP_ID")
dta_Shp$pre_trend_NDVI_max <- timeRangeTrend(dta_Shp,"MaxL_[0-9][0-9][0-9][0-9]",1982,1995,"SP_ID")
dta_Shp$NDVIslope_95_10 <- timeRangeTrend(dta_Shp,"MaxL_[0-9][0-9][0-9][0-9]",1995,2010,"SP_ID")
dta_Shp@data["NDVIslopeChange_95_10"] <- dta_Shp$MeanL_2010 - dta_Shp$MeanL_1995
#NDVI Trends for 1995-2001
dta_Shp$post_trend_NDVI_95_01 <- timeRangeTrend(dta_Shp,"MeanL_[0-9][0-9][0-9][0-9]",1995,2001,"SP_ID")
dta_Shp@data["NDVIslopeChange_95_01"] <- dta_Shp$MeanL_2001 - dta_Shp$MeanL_1995
#NDVI Trends for 2001-2010
dta_Shp$post_trend_NDVI_01_10 <- timeRangeTrend(dta_Shp,"MeanL_[0-9][0-9][0-9][0-9]",2001,2010,"SP_ID")
dta_Shp@data["NDVIslopeChange_01_10"] <- dta_Shp$MeanL_2010 - dta_Shp$MeanL_2001
#dta_Shp@data["NDVIslopeChange_01_10"] <- dta_Shp@data["post_trend_NDVI_01_10"] - dta_Shp@data["pre_trend_NDVI_max"]
#Calculate Temp and Precip Pre and Post Trends
dta_Shp$pre_trend_temp_mean <- timeRangeTrend(dta_Shp,"MeanT_[0-9][0-9][0-9][0-9]",1982,1995,"SP_ID")
dta_Shp$pre_trend_temp_max <- timeRangeTrend(dta_Shp,"MaxT_[0-9][0-9][0-9][0-9]",1982,1995,"SP_ID")
dta_Shp$pre_trend_temp_min <- timeRangeTrend(dta_Shp,"MinT_[0-9][0-9][0-9][0-9]",1982,1995,"SP_ID")
dta_Shp$post_trend_temp_mean <- timeRangeTrend(dta_Shp,"MeanT_[0-9][0-9][0-9][0-9]",1995,2010,"SP_ID")
dta_Shp$post_trend_temp_max <- timeRangeTrend(dta_Shp,"MaxT_[0-9][0-9][0-9][0-9]",1995,2010,"SP_ID")
dta_Shp$post_trend_temp_min <- timeRangeTrend(dta_Shp,"MinT_[0-9][0-9][0-9][0-9]",1995,2010,"SP_ID")
dta_Shp$post_trend_temp_95_01 <- timeRangeTrend(dta_Shp,"MeanT_[0-9][0-9][0-9][0-9]",1995,2001,"SP_ID")
dta_Shp$post_trend_temp_01_10 <- timeRangeTrend(dta_Shp,"MeanT_[0-9][0-9][0-9][0-9]",2001,2010,"SP_ID")
dta_Shp$pre_trend_precip_mean <- timeRangeTrend(dta_Shp,"MeanP_[0-9][0-9][0-9][0-9]",1982,1995,"SP_ID")
dta_Shp$pre_trend_precip_max <- timeRangeTrend(dta_Shp,"MaxP_[0-9][0-9][0-9][0-9]",1982,1995,"SP_ID")
dta_Shp$pre_trend_precip_min <- timeRangeTrend(dta_Shp,"MinP_[0-9][0-9][0-9][0-9]",1982,1995,"SP_ID")
dta_Shp$post_trend_precip_mean <- timeRangeTrend(dta_Shp,"MeanP_[0-9][0-9][0-9][0-9]",1995,2010,"SP_ID")
dta_Shp$post_trend_precip_max <- timeRangeTrend(dta_Shp,"MaxP_[0-9][0-9][0-9][0-9]",1995,2010,"SP_ID")
dta_Shp$post_trend_precip_min <- timeRangeTrend(dta_Shp,"MinP_[0-9][0-9][0-9][0-9]",1995,2010,"SP_ID")
dta_Shp$post_trend_precip_95_01 <- timeRangeTrend(dta_Shp,"MeanP_[0-9][0-9][0-9][0-9]",1995,2001,"SP_ID")
dta_Shp$post_trend_precip_01_10 <- timeRangeTrend(dta_Shp,"MeanP_[0-9][0-9][0-9][0-9]",2001,2010,"SP_ID")
#-------------------------------------------------
#-------------------------------------------------
#Define the Treatment Variable and Population
#-------------------------------------------------
#-------------------------------------------------
#Make a binary to test treatment..
dta_Shp@data["TrtBin"] <- 0
dta_Shp@data$TrtBin[dta_Shp@data$demend_y <= 2001] <- 1
dta_Shp@data$TrtBin[(dta_Shp@data$demend_m > 4) & (dta_Shp@data$demend_y==2001)] <- 0
#Remove units that did not ever receive any treatment (within-sample test)
dta_Shp@data$NA_check <- 0
dta_Shp@data$NA_check[is.na(dta_Shp@data$demend_y)] <- 1
int_Shp <- dta_Shp[dta_Shp@data$NA_check != 1,]
dta_Shp <- int_Shp
#-------------------------------------------------
#-------------------------------------------------
#Define and run the first-stage of the PSM, calculating propensity scores
#-------------------------------------------------
#-------------------------------------------------
psmModel <- "TrtBin ~ terrai_are + Pop_1990 + MeanT_1995 + pre_trend_temp_mean + pre_trend_temp_min +
pre_trend_temp_max + MeanP_1995 + pre_trend_precip_min +
pre_trend_NDVI_mean + pre_trend_NDVI_max + Slope + Elevation + MaxL_1995 + Riv_Dist + Road_dist +
pre_trend_precip_mean + pre_trend_precip_max"
#MeanL_1995 +
psmRes <- SAT::SpatialCausalPSM(dta_Shp,mtd="logit",psmModel,drop="support",visual=FALSE)
#-------------------------------------------------
#-------------------------------------------------
#Based on the Propensity Score Matches, pair comprable treatment and control units.
#-------------------------------------------------
#-------------------------------------------------
drop_set<- c(drop_unmatched=TRUE,drop_method="None",drop_thresh=0.25)
psm_Pairs <- SAT(dta = psmRes$data, mtd = "fastNN",constraints=c(groups="UF"),psm_eq = psmModel, ids = "id", drop_opts = drop_set, visual="TRUE", TrtBinColName="TrtBin")
#c(groups=c("UF"),distance=NULL)
trttable <- table (psm_Pairs@data$TrtBin)
View(trttable)
#-------------------------------------------------
#-------------------------------------------------
#Convert from a wide-form dataset for the Cross-sectional
#to a long-form dataset for the panel model.
#-------------------------------------------------
#-------------------------------------------------
#Clean up data entry
#psm_Pairs$enforce_st[psm_Pairs$enforce_st == "1998-1999"] <- NA
#psm_Pairs$enforce_st <- as.numeric(paste(psm_Pairs$enforce_st))
varList = c("MeanL_","MaxL_")
psm_Long <- BuildTimeSeries(dta=psm_Pairs,idField="reu_id",varList_pre=varList,1982,2010,colYears=c("demend_y","apprend_y","regend_y"),interpYears=c("Slope","Road_dist","Riv_Dist","UF","Elevation","terrai_are","Pop_","MeanT_","MeanP_","MaxT_","MaxP_","MinP_","MinT_","TrtBin"))
psm_Long$Year <- as.numeric(psm_Long$Year)
write.csv(psm_Long,file="/Users/rbtrichler/Documents/AidData/KFW Brazil Eval/KFW/KFW_Comm/psm_Long.csv")
#create dummy for being in UF in arc of deforestation (para, mato grosso, rondonia, maranhao, tocantins)
psm_Long$arc<-NA
psm_Long$arc[which(psm_Long$UF=="PA")] <-1
psm_Long$arc[which(psm_Long$UF!="PA")]<-0
pModelMax_A <- "MaxL_ ~ TrtMnt_demend_y + factor(reu_id) "
pModelMax_B <- "MaxL_ ~ TrtMnt_demend_y + MeanT_ + MeanP_ + Pop_ + MaxT_ + MaxP_ + MinT_ + MinP_ + factor(reu_id) "
pModelMax_C <- "MaxL_ ~ TrtMnt_demend_y + MeanT_ + MeanP_ + Pop_ + MaxT_ + MaxP_ + MinT_ + MinP_ + Year + factor(reu_id)"
pModelMax_D <- "MaxL_ ~ TrtMnt_demend_y + MeanT_ + MeanP_ + Pop_ + MaxT_ + MaxP_ + MinT_ + MinP_ + factor(reu_id) + factor(Year)"
pModelMax_E <- "MaxL_ ~ TrtMnt_demend_y + MeanT_ + MeanP_ + Pop_ + MaxT_ + MaxP_ + MinT_ + MinP_ + TrtMnt_demend_y*arc + factor(reu_id) + factor(Year)"
pModelMax_A_fit <- Stage2PSM(pModelMax_A ,psm_Long,type="cmreg", table_out=TRUE, opts=c("reu_id","Year"))
pModelMax_B_fit <- Stage2PSM(pModelMax_B ,psm_Long,type="cmreg", table_out=TRUE, opts=c("reu_id","Year"))
pModelMax_C_fit <- Stage2PSM(pModelMax_C ,psm_Long,type="cmreg", table_out=TRUE, opts=c("reu_id","Year"))
pModelMax_D_fit <- Stage2PSM(pModelMax_D ,psm_Long,type="cmreg", table_out=TRUE, opts=c("reu_id","Year"))
pModelMax_E_fit <- Stage2PSM(pModelMax_E ,psm_Long,type="cmreg", table_out=TRUE, opts=c("reu_id","Year"))
#------------------------------------------------------------------------
#------------------------------------------------------------------------
View(psm_Long$MaxL)
temp_TS_median <- fivenum(psm_Long$MaxL[1041:1120])[3]
high_pressure_regions_1995 <- ifelse(psm_Long$MaxL[1041:1120] > temp_TS_median, 1, 0)
high_pressure_regions <- ifelse(psm_Long$reu_id == 118 | psm_Long$reu_id == 142 |
psm_Long$reu_id == 105 | psm_Long$reu_id == 148 |
psm_Long$reu_id == 154 | psm_Long$reu_id == 159 |
psm_Long$reu_id == 160 | psm_Long$reu_id == 161 |
psm_Long$reu_id == 162 | psm_Long$reu_id == 163 |
psm_Long$reu_id == 146 | psm_Long$reu_id == 168 |
psm_Long$reu_id == 151 | psm_Long$reu_id == 157 |
psm_Long$reu_id == 170 | psm_Long$reu_id == 174 |
psm_Long$reu_id == 115 | psm_Long$reu_id == 80 |
psm_Long$reu_id == 147 | psm_Long$reu_id == 74 |
psm_Long$reu_id == 88 | psm_Long$reu_id == 155 |
psm_Long$reu_id == 100 | psm_Long$reu_id == 123 |
psm_Long$reu_id == 172 | psm_Long$reu_id == 133 |
psm_Long$reu_id == 85 | psm_Long$reu_id == 89 |
psm_Long$reu_id == 171 | psm_Long$reu_id == 86 |
psm_Long$reu_id == 91 | psm_Long$reu_id == 175 |
psm_Long$reu_id == 130 | psm_Long$reu_id == 113 |
psm_Long$reu_id == 109 | psm_Long$reu_id == 103 |
psm_Long$reu_id == 134 | psm_Long$reu_id == 179 |
psm_Long$reu_id == 94 | psm_Long$reu_id == 95, 1, 0)
high_pressure_regions_int <- (high_pressure_regions * psm_Long$TrtMnt_demend_y)
pModelMax_HP <- "MaxL_ ~ TrtMnt_demend_y + MeanT_ + MeanP_ + Pop_ + MaxT_ + MaxP_ + MinT_ + MinP_ + factor(reu_id) + Year + high_pressure_regions + high_pressure_regions_int"
pModelMax_HP_fit <- Stage2PSM(pModelMax_C ,psm_Long,type="cmreg", table_out=TRUE, opts=c("reu_id","Year"))
#temp_HPR <- ifelse(psm_Long$Year <= 1995 & high_pressure_regions == 1, 1, 0)
stargazer(pModelMax_A_fit $cmreg,pModelMax_B_fit $cmreg,pModelMax_C_fit $cmreg,type="html",align=TRUE,keep=c("TrtMnt","MeanT_","MeanP_","Pop_","MaxT_","MaxP_","MinT_","MinP_","Year"),
covariate.labels=c("TrtMnt_regend_y","MeanT","MeanP","Pop","MaxT","MaxP","MinT","MinP","Year"),
omit.stat=c("f","ser"),
title="Regression Results",
dep.var.labels=c("Max NDVI")
)
##Workspace
#pre-trend NDVI scatter plot
plot(dta_Shp@data$demend_y, dta_Shp@data$pre_trend_NDVI_max,
xlab="Community Demarcation Year",ylab="NDVI Max Pre Trend")
plot(psm_Pairs@data$demend_y, psm_Pairs@data$pre_trend_NDVI_max)
# time series graph with year effects stripped out
reg=lm(MaxL_ ~ factor(Year), data=psm_Long)
psm_Long$resid <- residuals(reg)
plot(psm_Long$resid)
ViewTimeSeries(dta=dta_Shp,IDfield="reu_id",TrtField="TrtBin",idPre="MaxL_[0-9][0-9][0-9][0-9]")
psm_Long2 <- psm_Long
psm_Long2 <- psm_Long[c("Year","resid","reu_id","TrtBin")]
ggplot(data = psm_Long2, aes(x=Year, y=resid, group=reu_id,colour=factor(TrtBin))) +
#geom_point(size=.5) +
geom_line(size=.5, linetype=2) +
stat_summary(fun.y=mean,aes(x=Year, y=resid, group=TrtBin,colour=factor(TrtBin)),data=psm_Long2,geom='line',size=1.5)+
theme(axis.text.x=element_text(angle=90,hjust=1))
stat_summary(fun.y=mean,aes(x=Year, y=resid, group="reu_id",colour=factor(TrtBin)),data=psm_Long2,geom='line',size=1.5)+
ggplot(data = psm_Long2, aes(x=Year, y=resid, group="reu_id",colour=factor(TrtBin))) +
stat_summary(fun.y=mean,aes(x=Year, y=resid, group="reu_id",colour=factor(TrtBin)),data=psm_Long2,geom='line',size=1.5)+
theme(axis.text.x=element_text(angle=90,hjust=1))