-
Notifications
You must be signed in to change notification settings - Fork 0
/
gps.c
312 lines (242 loc) · 9.46 KB
/
gps.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/*
Parse GPS data.
Copyright (C) 2019, ENSIMAG students
This file is based on LoRaMAC-node from Semtech, under Revised BSD License.
*/
#ifdef GPS
#include "gps.h"
#include <mutex.h>
#include <string.h>
#include <stdlib.h>
// Various type of NMEA data we can receive with the GPS.
static const char NmeaDataTypeGPGGA[] = "GPGGA";
static const char NmeaDataTypeGPRMC[] = "GPRMC";
// TODO process messages GPGLL : Latitude, longitude, UTC time of position fix and status.
// TODO process messages GPGSA : GPS receiver operating mode, satellites used in the position solution, and DOP values.
// TODO process messages GPGSV : The number of GPS satellites in view satellite ID numbers, elevation, azimuth, and SNR values.
// TODO process messages GPMSS : Signal-to-noise ratio, signal strength, frequency, and bit rate from a radio-beacon receiver.
// TODO process messages GPRMC : Time, date, position, course and speed data.
// TODO process messages GPVTG : Course and speed information relative to the ground.
// TODO process messages GPZDA : PPS timing message (synchronized to PPS).
// TODO process messages from BD ou GB - Beidou ; GA - Galileo ; GL - GLONASS.
// Value used for the conversion of the position from DMS to decimal.
static const int32_t MaxNorthPosition = 8388607; // 2^23 - 1
static const int32_t MaxSouthPosition = 8388608; // -2^23
static const int32_t MaxEastPosition = 8388607; // 2^23 - 1
static const int32_t MaxWestPosition = 8388608; // -2^23
// GPS data in ASCII and numrical formats.
gps_nmea_t gps_nmea;
gps_data_t gps_data;
// Mutex that protect GPS data.
static mutex_t gps_mutex = MUTEX_INIT;
// Convert a nibble to hex char.
static int8_t nibble_to_hex(uint8_t a)
{
if (a < 10)
return '0' + a;
else if (a < 16)
return 'A' + (a - 10);
else
return '?';
}
// Convert GPS positions from double to binary values.
static void positions_to_binary(void)
{
long double temp;
if (gps_data.latitude >= 0) { // North
temp = gps_data.latitude * MaxNorthPosition;
gps_data.latitude_bin = temp / 90;
} else { // South
temp = gps_data.latitude * MaxSouthPosition;
gps_data.latitude_bin = temp / 90;
}
if (gps_data.longitude >= 0) { // East
temp = gps_data.longitude * MaxEastPosition;
gps_data.longitude_bin = temp / 180;
} else { // West
temp = gps_data.longitude * MaxWestPosition;
gps_data.longitude_bin = temp / 180;
}
}
// Convert GPS positions from ASCII to double values.
static void positions_to_double(void)
{
double valueTmp1, valueTmp2, valueTmp3, valueTmp4;
// Convert the latitude from ASCII to uint8_t values.
for (int i = 0 ; i < 10 ; i++ )
gps_nmea.latitude[i] = gps_nmea.latitude[i] & 0xF;
// Convert latitude from degree/minute/second (DMS) format into decimal.
valueTmp1 = (double)gps_nmea.latitude[0] * 10.0 + (double)gps_nmea.latitude[1];
valueTmp2 = (double)gps_nmea.latitude[2] * 10.0 + (double)gps_nmea.latitude[3];
valueTmp3 = (double)gps_nmea.latitude[5] * 1000.0 + (double)gps_nmea.latitude[6] * 100.0 +
(double)gps_nmea.latitude[7] * 10.0 + (double)gps_nmea.latitude[8];
gps_data.latitude = valueTmp1 + ((valueTmp2 + (valueTmp3 * 0.0001)) / 60.0);
if (gps_nmea.latitude_pole[0] == 'S')
gps_data.latitude *= -1;
// Convert the longitude from ASCII to uint8_t values.
for (int i = 0 ; i < 10 ; i++)
gps_nmea.longitude[i] = gps_nmea.longitude[i] & 0xF;
// Convert longitude from degree/minute/second (DMS) format into decimal.
valueTmp1 = (double)gps_nmea.longitude[0] * 100.0 + (double)gps_nmea.longitude[1] * 10.0 + (double)gps_nmea.longitude[2];
valueTmp2 = (double)gps_nmea.longitude[3] * 10.0 + (double)gps_nmea.longitude[4];
valueTmp3 = (double)gps_nmea.longitude[6] * 1000.0 + (double)gps_nmea.longitude[7] * 100;
valueTmp4 = (double)gps_nmea.longitude[8] * 10.0 + (double)gps_nmea.longitude[9];
gps_data.longitude = valueTmp1 + (valueTmp2 / 60.0) + (((valueTmp3 + valueTmp4) * 0.0001) / 60.0);
if (gps_nmea.longitude_pole[0] == 'W')
gps_data.longitude *= -1;
}
// Calculates the checksum for a NMEA sentence (and return the position of the
// checksum in the sentence).
static int32_t nmea_checksum(int8_t *nmeaStr, int32_t nmeaStrSize, int8_t *checksum)
{
int i = 0;
uint8_t checkNum = 0;
if ((nmeaStr == NULL) || (checksum == NULL) || (nmeaStrSize <= 1))
return -1;
if (nmeaStr[i] == '$')
i += 1; // Skip the first '$' if necessary.
while (nmeaStr[i] != '*') {
checkNum ^= nmeaStr[i]; // XOR until '*' or max length is reached.
i += 1;
if (i >= nmeaStrSize)
return -1;
}
// Convert checksum value to 2 hexadecimal characters.
checksum[0] = nibble_to_hex(checkNum / 16); // upper nibble
checksum[1] = nibble_to_hex(checkNum % 16); // lower nibble
return i + 1;
}
// Calculate the checksum of a NMEA frame and compare it to the checksum that
// is present at the end of it (return true if it matches).
static bool nmea_validate_checksum(int8_t *serialBuff, int32_t buffSize)
{
int32_t checksumIndex;
int8_t checksum[2]; // 2 characters to calculate NMEA checksum.
checksumIndex = nmea_checksum(serialBuff, buffSize, checksum);
if (checksumIndex < 0)
return false;
if (checksumIndex >= (buffSize - 2))
return false; // Not enough char in the serial buffer to read checksum.
return // Check the checksum.
(serialBuff[checksumIndex + 0] == checksum[0]) &&
(serialBuff[checksumIndex + 1] == checksum[1]);
}
// Format GPS data.
static void format_gps_data(void)
{
positions_to_double();
positions_to_binary();
if (gps_data.has_fix)
gps_data.altitude = atoi(gps_nmea.altitude);
}
// Read a field from RX buffer.
#define READ_FIELD(field, i, rxBuffer, maxSize) \
{ \
uint8_t __fs = 0; \
while ((rxBuffer)[(i) + __fs++] != ',') \
if (__fs > (maxSize)) return GPS_FAIL; \
for (uint8_t __j = 0; __j < __fs; __j++, (i)++) \
(field)[__j] = (rxBuffer)[i]; \
}
// Read a field from RX buffer.
#define SKIP_FIELD(i, rxBuffer, maxSize) \
{ \
uint8_t __fs = 0; \
while ((rxBuffer)[(i) + __fs++] != ',') \
if (__fs > (maxSize)) return GPS_FAIL; \
(i) += __fs; \
}
// Parse a GPGGA message.
static uint8_t parse_GPGGA(uint8_t i, int8_t *rxBuffer)
{
// NmeaUtcTime.
SKIP_FIELD(i, rxBuffer, 11);
// NmeaLatitude.
READ_FIELD(gps_nmea.latitude, i, rxBuffer, 10);
// NmeaLatitudePole.
READ_FIELD(gps_nmea.latitude_pole, i, rxBuffer, 2);
// NmeaLongitude.
READ_FIELD(gps_nmea.longitude, i, rxBuffer, 11);
// NmeaLongitudePole.
READ_FIELD(gps_nmea.longitude_pole, i, rxBuffer, 2);
// NmeaFixQuality.
READ_FIELD(gps_nmea.fix_quality, i, rxBuffer, 2);
// NmeaSatelliteTracked.
SKIP_FIELD(i, rxBuffer, 3);
// NmeaHorizontalDilution.
SKIP_FIELD(i, rxBuffer, 6);
// NmeaAltitude.
READ_FIELD(gps_nmea.altitude, i, rxBuffer, 8);
// NmeaAltitudeUnit.
SKIP_FIELD(i, rxBuffer, 2);
// NmeaHeightGeoid.
SKIP_FIELD(i, rxBuffer, 8);
// NmeaHeightGeoidUnit.
SKIP_FIELD(i, rxBuffer, 2);
gps_data.has_fix = (gps_nmea.fix_quality[0] > 0x30);
format_gps_data();
return GPS_SUCCESS;
}
// Parse a GPRMC message.
static uint8_t parse_GPRMC(uint8_t i, int8_t *rxBuffer)
{
// NmeaUtcTime.
SKIP_FIELD(i, rxBuffer, 11);
// NmeaDataStatus.
READ_FIELD(gps_nmea.fix_quality, i, rxBuffer, 2);
// NmeaLatitude.
READ_FIELD(gps_nmea.latitude, i, rxBuffer, 10);
// NmeaLatitudePole.
READ_FIELD(gps_nmea.latitude_pole, i, rxBuffer, 2);
// NmeaLongitude.
READ_FIELD(gps_nmea.longitude, i, rxBuffer, 11);
// NmeaLongitudePole.
READ_FIELD(gps_nmea.longitude_pole, i, rxBuffer, 2);
// NmeaSpeed.
SKIP_FIELD(i, rxBuffer, 8);
// NmeaDetectionAngle.
SKIP_FIELD(i, rxBuffer, 8);
// NmeaDate.
SKIP_FIELD(i, rxBuffer, 8);
gps_data.has_fix = (gps_nmea.fix_quality[0] == 0x41);
format_gps_data();
return GPS_SUCCESS;
}
// Parse GPS data.
uint8_t gps_parse_data(int8_t *rxBuffer, int32_t rxBufferSize)
{
if (!nmea_validate_checksum(rxBuffer, rxBufferSize))
return GPS_FAIL;
uint8_t i = 1;
READ_FIELD(gps_nmea.data_type, i, rxBuffer, 6);
if (strncmp(gps_nmea.data_type, NmeaDataTypeGPGGA, 5) == 0)
return parse_GPGGA(i, rxBuffer);
else if (strncmp(gps_nmea.data_type, NmeaDataTypeGPRMC, 5) == 0)
return parse_GPRMC(i, rxBuffer);
else
return GPS_FAIL;
}
// Get the lastest GPS position in binary format.
uint8_t gps_get_binary(int32_t *lat, int32_t *lon, int16_t *alt)
{
mutex_lock(&gps_mutex);
uint8_t status = gps_data.has_fix ? GPS_SUCCESS : GPS_FAIL;
if (!gps_data.has_fix)
gps_reset_data();
*lat = gps_data.latitude_bin;
*lon = gps_data.longitude_bin;
*alt = gps_data.altitude;
mutex_unlock(&gps_mutex);
return status;
}
// Reset GPS data.
void gps_reset_data(void)
{
gps_data.has_fix = false;
gps_data.altitude = 0xFFFF;
gps_data.latitude = 0;
gps_data.longitude = 0;
gps_data.latitude_bin = 0;
gps_data.longitude_bin = 0;
}
#endif