Skip to content

Latest commit

 

History

History
212 lines (151 loc) · 5.8 KB

install.md

File metadata and controls

212 lines (151 loc) · 5.8 KB

Installation

Requirements

  • Linux
  • ffmpeg
  • Python 3.7+
  • PyTorch 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.8.1, 1.9.0 or 1.9.1.
  • CUDA 9.2+
  • GCC 5+
  • PyTorch3D 0.4+
  • MMCV (Please install mmcv-full>=1.3.13, <=1.5.0 for GPU)

Optional:

  • MMPOSE (Only for demo.)
  • MMDETECTION (Only for demo.)
  • MMTRACKING (Only for multi-person demo. If you use mmtrack, please install mmcls<1.18.0, mmcv-full>=1.3.16, <1.4.0 for GPU)

Prepare environment

a. Install ffmpeg

Install ffmpeg with conda directly and the libx264 will be built automatically.

conda install ffmpeg

b. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab

c. Install PyTorch and torchvision following the official instructions.

conda install pytorch=={torch_version} torchvision cudatoolkit={cu_version} -c pytorch

E.g., install PyTorch 1.8.0 & CUDA 10.2.

conda install pytorch==1.8.0 torchvision cudatoolkit=10.2 -c pytorch

Important: Make sure that your compilation CUDA version and runtime CUDA version match.

d. Install PyTorch3D and dependency libs.

conda install -c fvcore -c iopath -c conda-forge fvcore iopath -y
conda install -c bottler nvidiacub -y

conda install pytorch3d -c pytorch3d

Please refer to PyTorch3D-install for details.

Your installation is successful if you can do these in command line.

echo "import pytorch3d;print(pytorch3d.__version__); \
    from pytorch3d.renderer import MeshRenderer;print(MeshRenderer);\
    from pytorch3d.structures import Meshes;print(Meshes);\
    from pytorch3d.renderer import cameras;print(cameras);\
    from pytorch3d.transforms import Transform3d;print(Transform3d);"|python

echo "import torch;device=torch.device('cuda');\
    from pytorch3d.utils import torus;\
    Torus = torus(r=10, R=20, sides=100, rings=100, device=device);\
    print(Torus.verts_padded());"|python

Install MMHuman3D

a. Build mmcv-full & mmpose & mmdet & mmtrack

  • mmcv-full

We recommend you to install the pre-build package as below.

For CPU:

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cpu/{torch_version}/index.html

Please replace {torch_version} in the url to your desired one.

For GPU:

pip install "mmcv-full>=1.3.13,<1.4.0" -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html

Please replace {cu_version} and {torch_version} in the url to your desired one.

For example, to install mmcv-full with CUDA 10.2 and PyTorch 1.8.0, use the following command:

pip install "mmcv-full>=1.3.13,<1.4.0" -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

See here for different versions of MMCV compatible to different PyTorch and CUDA versions. For more version download link, refer to openmmlab-download.

Optionally you can choose to compile mmcv from source by the following command

git clone https://github.com/open-mmlab/mmcv.git -b v1.3.13
cd mmcv
MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full, which contains cuda ops, will be installed after this step
# OR pip install -e .  # package mmcv, which contains no cuda ops, will be installed after this step
cd ..

Important: You need to run pip uninstall mmcv first if you have mmcv installed. If mmcv and mmcv-full are both installed, there will be ModuleNotFoundError.

  • mmdetection (optional)
pip install mmdet

Optionally, you can also build MMDetection from source in case you want to modify the code:

git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .
  • mmpose (optional)
pip install mmpose

Optionally, you can also build MMPose from source in case you want to modify the code:

git clone https://github.com/open-mmlab/mmpose.git
cd mmpose
pip install -r requirements.txt
pip install -v -e .
  • mmtracking (optional)
pip install "mmcls<0.18.0" "mmtrack<0.9.0,>=0.8.0"

Optionally, you can also build MMTracking from source in case you want to modify the code:

git clone [email protected]:open-mmlab/mmtracking.git -b v0.8.0
cd mmtracking
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"

b. Clone the mmhuman3d repository.

git clone https://github.com/open-mmlab/mmhuman3d.git
cd mmhuman3d

c. Install build requirements and then install mmhuman3d.

pip install -v -e .  # or "python setup.py develop"

A from-scratch setup script

conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab

conda install pytorch==1.8.0 torchvision cudatoolkit=10.2 -c pytorch -y

# install PyTorch3D

conda install -c fvcore -c iopath -c conda-forge fvcore iopath -y
conda install -c bottler nvidiacub -y

conda install pytorch3d -c pytorch3d

# install mmcv-full

pip install "mmcv-full>=1.3.13,<1.4.0" -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html


# Optional
# install mmdetection & mmpose & mmtracking

pip install mmdet

pip install mmpose

pip install "mmcls<0.18.0" "mmtrack<0.9.0,>=0.8.0"

# install mmhuman3d

git clone https://github.com/open-mmlab/mmhuman3d.git
cd mmhuman3d
pip install -v -e .