forked from thjaeger/easystroke
-
Notifications
You must be signed in to change notification settings - Fork 1
/
stroke.c
262 lines (232 loc) · 6.16 KB
/
stroke.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/*
* Copyright (c) 2009, Thomas Jaeger <[email protected]>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#define _GNU_SOURCE
#include "stroke.h"
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <stdbool.h>
const double stroke_infinity = 0.2;
#define EPS 0.000001
struct point {
double x;
double y;
double t;
double dt;
double alpha;
};
struct _stroke_t {
int n;
int capacity;
struct point *p;
};
stroke_t *stroke_alloc(int n) {
assert(n > 0);
stroke_t *s = malloc(sizeof(stroke_t));
s->n = 0;
s->capacity = n;
s->p = calloc(n, sizeof(struct point));
return s;
}
void stroke_add_point(stroke_t *s, double x, double y) {
assert(s->capacity > s->n);
s->p[s->n].x = x;
s->p[s->n].y = y;
s->n++;
}
static inline double angle_difference(double alpha, double beta) {
double d = alpha - beta;
if (d < -1.0)
d += 2.0;
else if (d > 1.0)
d -= 2.0;
return d;
}
void stroke_finish(stroke_t *s) {
assert(s->capacity > 0);
s->capacity = -1;
int n = s->n - 1;
double total = 0.0;
s->p[0].t = 0.0;
for (int i = 0; i < n; i++) {
total += hypot(s->p[i+1].x - s->p[i].x, s->p[i+1].y - s->p[i].y);
s->p[i+1].t = total;
}
for (int i = 0; i <= n; i++)
s->p[i].t /= total;
double minX = s->p[0].x, minY = s->p[0].y, maxX = minX, maxY = minY;
for (int i = 1; i <= n; i++) {
if (s->p[i].x < minX) minX = s->p[i].x;
if (s->p[i].x > maxX) maxX = s->p[i].x;
if (s->p[i].y < minY) minY = s->p[i].y;
if (s->p[i].y > maxY) maxY = s->p[i].y;
}
double scaleX = maxX - minX;
double scaleY = maxY - minY;
double scale = (scaleX > scaleY) ? scaleX : scaleY;
if (scale < 0.001) scale = 1;
for (int i = 0; i <= n; i++) {
s->p[i].x = (s->p[i].x-(minX+maxX)/2)/scale + 0.5;
s->p[i].y = (s->p[i].y-(minY+maxY)/2)/scale + 0.5;
}
for (int i = 0; i < n; i++) {
s->p[i].dt = s->p[i+1].t - s->p[i].t;
s->p[i].alpha = atan2(s->p[i+1].y - s->p[i].y, s->p[i+1].x - s->p[i].x)/M_PI;
}
}
void stroke_free(stroke_t *s) {
if (s)
free(s->p);
free(s);
}
int stroke_get_size(const stroke_t *s) { return s->n; }
void stroke_get_point(const stroke_t *s, int n, double *x, double *y) {
assert(n < s->n);
if (x)
*x = s->p[n].x;
if (y)
*y = s->p[n].y;
}
double stroke_get_time(const stroke_t *s, int n) {
assert(n < s->n);
return s->p[n].t;
}
double stroke_get_angle(const stroke_t *s, int n) {
assert(n+1 < s->n);
return s->p[n].alpha;
}
inline static double sqr(double x) { return x*x; }
double stroke_angle_difference(const stroke_t *a, const stroke_t *b, int i, int j) {
return fabs(angle_difference(stroke_get_angle(a, i), stroke_get_angle(b, j)));
}
static inline void step(const stroke_t *a,
const stroke_t *b,
const int N,
double *dist,
int *prev_x,
int *prev_y,
const int x,
const int y,
const double tx,
const double ty,
int *k,
const int x2,
const int y2)
{
double dtx = a->p[x2].t - tx;
double dty = b->p[y2].t - ty;
if (dtx >= dty * 2.2 || dty >= dtx * 2.2 || dtx < EPS || dty < EPS)
return;
(*k)++;
double d = 0.0;
int i = x, j = y;
double next_tx = (a->p[i+1].t - tx) / dtx;
double next_ty = (b->p[j+1].t - ty) / dty;
double cur_t = 0.0;
for (;;) {
double ad = sqr(angle_difference(a->p[i].alpha, b->p[j].alpha));
double next_t = next_tx < next_ty ? next_tx : next_ty;
bool done = next_t >= 1.0 - EPS;
if (done)
next_t = 1.0;
d += (next_t - cur_t)*ad;
if (done)
break;
cur_t = next_t;
if (next_tx < next_ty)
next_tx = (a->p[++i+1].t - tx) / dtx;
else
next_ty = (b->p[++j+1].t - ty) / dty;
}
double new_dist = dist[x*N+y] + d * (dtx + dty);
if (new_dist != new_dist) abort();
if (new_dist >= dist[x2*N+y2])
return;
prev_x[x2*N+y2] = x;
prev_y[x2*N+y2] = y;
dist[x2*N+y2] = new_dist;
}
/* To compare two gestures, we use dynamic programming to minimize (an
* approximation) of the integral over square of the angle difference among
* (roughly) all reparametrizations whose slope is always between 1/2 and 2.
*/
double stroke_compare(const stroke_t *a, const stroke_t *b, int *path_x, int *path_y) {
const int M = a->n;
const int N = b->n;
const int m = M - 1;
const int n = N - 1;
double* dist = malloc(M * N * sizeof(double));
int* prev_x = malloc(M * N * sizeof(int));
int* prev_y = malloc(M * N * sizeof(int));
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
dist[i*N+j] = stroke_infinity;
dist[M*N-1] = stroke_infinity;
dist[0] = 0.0;
for (int x = 0; x < m; x++) {
for (int y = 0; y < n; y++) {
if (dist[x*N+y] >= stroke_infinity)
continue;
double tx = a->p[x].t;
double ty = b->p[y].t;
int max_x = x;
int max_y = y;
int k = 0;
while (k < 4) {
if (a->p[max_x+1].t - tx > b->p[max_y+1].t - ty) {
max_y++;
if (max_y == n) {
step(a, b, N, dist, prev_x, prev_y, x, y, tx, ty, &k, m, n);
break;
}
for (int x2 = x+1; x2 <= max_x; x2++)
step(a, b, N, dist, prev_x, prev_y, x, y, tx, ty, &k, x2, max_y);
} else {
max_x++;
if (max_x == m) {
step(a, b, N, dist, prev_x, prev_y, x, y, tx, ty, &k, m, n);
break;
}
for (int y2 = y+1; y2 <= max_y; y2++)
step(a, b, N, dist, prev_x, prev_y, x, y, tx, ty, &k, max_x, y2);
}
}
}
}
double cost = dist[M*N-1];
if (path_x && path_y) {
if (cost < stroke_infinity) {
int x = m;
int y = n;
int k = 0;
while (x || y) {
int old_x = x;
x = prev_x[x*N+y];
y = prev_y[old_x*N+y];
path_x[k] = x;
path_y[k] = y;
k++;
}
} else {
path_x[0] = 0;
path_y[0] = 0;
}
}
free(prev_y);
free(prev_x);
free(dist);
return cost;
}