-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimg_to_vec.py
73 lines (57 loc) · 2.48 KB
/
img_to_vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torchvision.models as models
import torchvision.transforms as transforms
from torch.autograd import Variable
class Img2Vec:
# Removed CUDA support
def __init__(self, model='resnet-18', layer='default', layer_output_size=512):
""" Img2Vec
:param model: String name of requested model
:param layer: String or Int depending on model. See more docs: https://github.com/christiansafka/img2vec.git
:param layer_output_size: Int depicting the output size of the requested layer
"""
self.layer_output_size = layer_output_size
self.model, self.extraction_layer = self._get_model_and_layer(model, layer)
self.model.eval()
self.scaler = transforms.Scale((224, 224))
self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
self.to_tensor = transforms.ToTensor()
# Removed tensor support
def get_vec(self, img):
""" Get vector embedding from PIL image
:param img: PIL Image
:returns: Numpy ndarray
"""
image = Variable(self.normalize(self.to_tensor(self.scaler(img))).unsqueeze(0))
my_embedding = torch.zeros(self.layer_output_size)
def copy_data(m, i, o):
my_embedding.copy_(o.data)
h = self.extraction_layer.register_forward_hook(copy_data)
h_x = self.model(image)
h.remove()
return my_embedding.numpy()
def _get_model_and_layer(self, model_name, layer):
""" Internal method for getting layer from model
:param model_name: model name such as 'resnet-18'
:param layer: layer as a string for resnet-18 or int for alexnet
:returns: pytorch model, selected layer
"""
if model_name == 'resnet-18':
model = models.resnet18(pretrained=True)
if layer == 'default':
layer = model._modules.get('avgpool')
self.layer_output_size = 512
else:
layer = model._modules.get(layer)
return model, layer
elif model_name == 'alexnet':
model = models.alexnet(pretrained=True)
if layer == 'default':
layer = model.classifier[-2]
self.layer_output_size = 4096
else:
layer = model.classifier[-layer]
return model, layer
else:
raise KeyError('Model %s was not found' % model_name)