-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
348 lines (298 loc) · 14.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri May 8 21:56:19 2020
@author: akshitac8
"""
import torch
import torch.nn as nn
import torch.autograd as autograd
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import time
import random
import os
import csv
import numpy as np
import warnings
import networks.CLF_model as model
import classifier as classifier
from config import opt
import util as util
warnings.filterwarnings('ignore')
########################################################
#setting up seeds
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
np.random.seed(opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed(opt.manualSeed)
torch.cuda.manual_seed_all(opt.manualSeed)
torch.set_default_tensor_type('torch.FloatTensor')
cudnn.benchmark = True # For speed i.e, cudnn autotuner
########################################################
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
#calling the dataloader
data = util.DATA_LOADER(opt)
print("training samples: ", data.ntrain)
############## MODEL INITIALIZATION #############
netE = model.Encoder(opt)
netG = model.CLF(opt)
netD = model.Discriminator(opt)
print(netE)
print(netG)
print(netD)
################################################
#init tensors
input_res = torch.FloatTensor(opt.batch_size, opt.resSize)
input_test_labels = torch.LongTensor(opt.fake_batch_size, opt.nclass_all)
input_labels = torch.LongTensor(opt.batch_size, opt.nseen_class)
input_train_early_fusion_att = torch.FloatTensor(opt.batch_size, opt.attSize)
input_test_early_fusion_att = torch.FloatTensor(opt.fake_batch_size, opt.attSize)
noise = torch.FloatTensor(opt.batch_size, opt.attSize)
one = torch.FloatTensor([1])
mone = one * -1
if opt.cuda:
netE.cuda()
netG.cuda()
netD.cuda()
input_res = input_res.cuda()
input_labels = input_labels.cuda()
input_train_early_fusion_att = input_train_early_fusion_att.cuda()
input_test_labels = input_test_labels.cuda()
input_test_early_fusion_att = input_test_early_fusion_att.cuda()
noise = noise.cuda()
one = one.cuda()
mone = mone.cuda()
def loss_fn(recon_x, x, mean, log_var):
## BCE+KL divergence loss
BCE = torch.nn.functional.binary_cross_entropy(recon_x+1e-12, x.detach(), size_average=False)
BCE = BCE.sum() / x.size(0)
KLD = -0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp()) / x.size(0)
return (BCE + KLD)
def sample():
#train dataloader
batch_labels, batch_feature, late_fusion_train_batch_att, early_fusion_train_batch_att = data.next_train_batch(opt.batch_size)
input_res.copy_(batch_feature)
input_train_early_fusion_att.copy_(early_fusion_train_batch_att)
input_labels.copy_(batch_labels)
return late_fusion_train_batch_att
def fake_sample(batch_size):
#fake data synthesis dataloader
batch_test_labels, late_fusion_test_batch_att, early_fusion_test_batch_att = data.next_test_batch(batch_size)
input_test_labels.copy_(batch_test_labels)
input_test_early_fusion_att.copy_(early_fusion_test_batch_att)
return late_fusion_test_batch_att
def generate_syn_feature(netG, classes, batch_size):
## SYNTHESIS MULTI LABEL FEATURES
nsample = classes.shape[0] # zsl_classes or gzsl_classes
if not nsample % batch_size == 0:
nsample = nsample + (batch_size - (nsample % batch_size))
nclass = classes.shape[1]
syn_noise = torch.FloatTensor(batch_size, opt.attSize)
syn_feature = torch.FloatTensor(nsample, opt.resSize)
syn_label = torch.LongTensor(nsample, classes.shape[1])
if opt.cuda:
syn_noise = syn_noise.cuda()
for k, i in enumerate(range(0, nsample, batch_size)):
late_fusion_test_batch_att = fake_sample(batch_size)
syn_noise.normal_(0, 1)
with torch.no_grad():
output = netG(syn_noise, att=late_fusion_test_batch_att, avg_att=input_test_early_fusion_att)
syn_feature.narrow(0, k*batch_size, batch_size).copy_(output)
syn_label.narrow(0, k*batch_size, batch_size).copy_(input_test_labels)
return syn_feature, syn_label
# setup optimizer
optimizerE = optim.Adam(netE.parameters(), lr=opt.lr)
optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
def calc_gradient_penalty(netD, real_data, fake_data, input_att=None):
alpha = torch.rand(opt.batch_size, 1)
alpha = alpha.expand(real_data.size())
if opt.cuda:
alpha = alpha.cuda()
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
if opt.cuda:
interpolates = interpolates.cuda()
interpolates.requires_grad = True
if input_att is None:
disc_interpolates = netD(interpolates)
else:
disc_interpolates = netD(interpolates, att=input_att)
ones = torch.ones(disc_interpolates.size())
if opt.cuda:
ones = ones.cuda()
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=ones,
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1)** 2).mean() * opt.lambda1
return gradient_penalty
f1_best_GZSL_AP = 0
f1_best_GZSL_F1_5 = 0
f1_best_GZSL_F1_3 = 0
f1_best_ZSL_F1_5 = 0
f1_best_ZSL_F1_3 = 0
sum_f1_best_GZSL_F1 = 0
sum_f1_best_ZSL_F1 = 0
gzsl_best_epoch=0
zsl_best_epoch=0
tic1 = time.time()
#training loop
for epoch in range(0, opt.nepoch+1):
mean_lossD = 0
mean_lossG = 0
mean_lossE = 0
tic = time.time()
for i in range(0, data.ntrain, opt.batch_size):
############################
# (1) Update D network: optimize WGAN-GP objective, Equation (2)
###########################
for p in netD.parameters(): # reset requires_grad
p.requires_grad = True # they are set to False below in generator update
for iter_d in range(opt.critic_iter):
late_fusion_train_batch_att = sample()
for param in netD.parameters():
param.grad = None
criticD_real = netD(input_res, att=input_train_early_fusion_att)
criticD_real = opt.gammaD*criticD_real.mean()
criticD_real.backward(mone)
noise.normal_(0, 1)
fake = netG(noise, att=late_fusion_train_batch_att, avg_att=input_train_early_fusion_att)
criticD_fake = netD(fake.detach(), att=input_train_early_fusion_att)
criticD_fake = opt.gammaD*criticD_fake.mean()
criticD_fake.backward(one)
gradient_penalty = opt.gammaD * calc_gradient_penalty(netD, input_res, fake.data, input_train_early_fusion_att)
gradient_penalty.backward()
Wasserstein_D = criticD_real - criticD_fake
D_cost = criticD_fake - criticD_real + gradient_penalty
optimizerD.step()
mean_lossD += D_cost.item()
############################
# (2) Update G network: optimize WGAN-GP objective, Equation (2)
###########################
for p in netD.parameters():
p.requires_grad = False
for param in netE.parameters():
param.grad = None
for param in netG.parameters():
param.grad = None
means, log_var = netE(input_res, att=input_train_early_fusion_att)
std = torch.exp(0.5 * log_var)
eps = torch.randn([opt.batch_size, opt.attSize])
if opt.cuda: eps=eps.cuda()
z = eps * std + means
recon_x = netG(z, att=late_fusion_train_batch_att, avg_att=input_train_early_fusion_att)
vae_loss_seen = loss_fn(recon_x, input_res, means, log_var)
mean_lossE += vae_loss_seen.item()
errG = vae_loss_seen
noise.normal_(0, 1)
fake = netG(noise, att=late_fusion_train_batch_att, avg_att=input_train_early_fusion_att)
criticG_fake = netD(fake, att=input_train_early_fusion_att).mean()
G_cost = -criticG_fake
errG += opt.gammaG*G_cost
mean_lossG += G_cost.item()
errG.backward()
optimizerE.step()
optimizerG.step()
mean_lossG /= data.ntrain / opt.batch_size
mean_lossD /= data.ntrain / opt.batch_size
mean_lossE /= data.ntrain / opt.batch_size
print('[%d/%d] Loss_D: %.4f Loss_G: %.4f, Loss_E: %.4f, Wasserstein_dist: %.4f' %
(epoch, opt.nepoch, mean_lossD, mean_lossG, mean_lossE, Wasserstein_D.item()))
print("Generator {}th finished time taken {}".format(epoch, time.time()-tic))
netG.eval()
gzsl_syn_feature, gzsl_syn_label = generate_syn_feature(netG, data.GZSL_fake_test_labels, opt.fake_batch_size)
if opt.gzsl:
nclass = opt.nclass_all
train_X = gzsl_syn_feature
train_Y = gzsl_syn_label
print(train_Y.shape)
tic = time.time()
gzsl_cls = classifier.CLASSIFIER(train_X, train_Y, data, nclass,
opt.cuda, opt, opt.classifier_lr, 0.5, opt.classifier_epoch,
opt.classifier_batch_size, True)
sum_GZSL_F1_5 = gzsl_cls.sum_F1_scores_seen_unseen[4]*100 + gzsl_cls.sum_F1_scores_seen_unseen[0]*100
if sum_f1_best_GZSL_F1 < sum_GZSL_F1_5:
gzsl_best_epoch = epoch
sum_f1_best_GZSL_F1 = sum_GZSL_F1_5
sum_f1_best_GZSL_AP = gzsl_cls.sum_F1_scores_seen_unseen[0]
sum_f1_best_GZSL_F1_3 = gzsl_cls.sum_F1_scores_seen_unseen[1]
sum_f1_best_GZSL_P_3 = gzsl_cls.sum_F1_scores_seen_unseen[2]
sum_f1_best_GZSL_R_3 = gzsl_cls.sum_F1_scores_seen_unseen[3]
sum_f1_best_GZSL_F1_5 = gzsl_cls.sum_F1_scores_seen_unseen[4]
sum_f1_best_GZSL_P_5 = gzsl_cls.sum_F1_scores_seen_unseen[5]
sum_f1_best_GZSL_R_5 = gzsl_cls.sum_F1_scores_seen_unseen[6]
print('GZSL: AP=%.4f' % (gzsl_cls.sum_F1_scores_seen_unseen[0]))
print('GZSL K=5 : f1=%.4f,P=%.4f,R=%.4f' % (
gzsl_cls.sum_F1_scores_seen_unseen[4], gzsl_cls.sum_F1_scores_seen_unseen[5], gzsl_cls.sum_F1_scores_seen_unseen[6]))
print('GZSL K=3 : f1=%.4f,P=%.4f,R=%.4f' % (
gzsl_cls.sum_F1_scores_seen_unseen[1], gzsl_cls.sum_F1_scores_seen_unseen[2], gzsl_cls.sum_F1_scores_seen_unseen[3]))
print("GZSL classification finished time taken {}".format(time.time()-tic))
######### FETCHING ZSL CLASSIFIER TRAINING DATA ########################
temp_label = gzsl_syn_label[:,:len(data.seenclasses)].sum(1)
zsl_syn_label = gzsl_syn_label[temp_label==0][:,len(data.seenclasses):]
zsl_syn_feature = gzsl_syn_feature[temp_label==0]
print("ZSL DATA", zsl_syn_label.shape)
###############################################3########################
tic = time.time()
zsl_cls = classifier.CLASSIFIER(zsl_syn_feature, zsl_syn_label, data,
data.unseenclasses.size(0), opt.cuda, opt, opt.classifier_lr,
0.5, opt.classifier_epoch, opt.classifier_batch_size, False)
sum_ZSL_F1 = zsl_cls.sum_F1_scores[4]*100 + zsl_cls.sum_F1_scores[0]*100
if sum_f1_best_ZSL_F1 < sum_ZSL_F1:
zsl_best_epoch = epoch
sum_f1_best_ZSL_F1 = sum_ZSL_F1
sum_f1_best_ZSL_AP = zsl_cls.sum_F1_scores[0]
sum_f1_best_ZSL_F1_3 = zsl_cls.sum_F1_scores[1]
sum_f1_best_ZSL_P_3 = zsl_cls.sum_F1_scores[2]
sum_f1_best_ZSL_R_3 = zsl_cls.sum_F1_scores[3]
sum_f1_best_ZSL_F1_5 = zsl_cls.sum_F1_scores[4]
sum_f1_best_ZSL_P_5 = zsl_cls.sum_F1_scores[5]
sum_f1_best_ZSL_R_5 = zsl_cls.sum_F1_scores[6]
print('ZSL: AP=%.4f' % (zsl_cls.sum_F1_scores[0]))
print('ZSL K=5 : f1=%.4f,P=%.4f,R=%.4f' % (zsl_cls.sum_F1_scores[4], zsl_cls.sum_F1_scores[5], zsl_cls.sum_F1_scores[6]))
print('ZSL K=3 : f1=%.4f,P=%.4f,R=%.4f' % (zsl_cls.sum_F1_scores[1], zsl_cls.sum_F1_scores[2], zsl_cls.sum_F1_scores[3]))
print("ZSL classification finished time taken {}".format(time.time()-tic))
if epoch % 3 == 0 and epoch > 0: ## PRINT BEST EPOCH AFTER EVERY 3 EPOCHS
print("LAST GZSL BEST EPOCH", gzsl_best_epoch)
print('GZSL: AP=%.4f' % (sum_f1_best_GZSL_AP))
print('GZSL K=5 : f1=%.4f,P=%.4f,R=%.4f' %
(sum_f1_best_GZSL_F1_5, sum_f1_best_GZSL_P_5, sum_f1_best_GZSL_R_5))
print('GZSL K=3 : f1=%.4f,P=%.4f,R=%.4f' %
(sum_f1_best_GZSL_F1_3, sum_f1_best_GZSL_P_3, sum_f1_best_GZSL_R_3))
print("LAST ZSL BEST EPOCH", zsl_best_epoch)
print('ZSL: AP=%.4f' % (sum_f1_best_ZSL_AP))
print('ZSL K=5 : f1=%.4f,P=%.4f,R=%.4f' %
(sum_f1_best_ZSL_F1_5, sum_f1_best_ZSL_P_5, sum_f1_best_ZSL_R_5))
print('ZSL K=3 : f1=%.4f,P=%.4f,R=%.4f' %
(sum_f1_best_ZSL_F1_3, sum_f1_best_ZSL_P_3, sum_f1_best_ZSL_R_3))
# reset G to training mode
netG.train()
print(" Total time taken {} ".format(time.time()-tic1))
print("GZSL BEST EPOCH", gzsl_best_epoch)
print('GZSL: AP=%.4f' % (sum_f1_best_GZSL_AP))
print('GZSL K=5 : f1=%.4f,P=%.4f,R=%.4f' %
(sum_f1_best_GZSL_F1_5, sum_f1_best_GZSL_P_5, sum_f1_best_GZSL_R_5))
print('GZSL K=3 : f1=%.4f,P=%.4f,R=%.4f' %
(sum_f1_best_GZSL_F1_3, sum_f1_best_GZSL_P_3, sum_f1_best_GZSL_R_3))
print("ZSL BEST EPOCH", zsl_best_epoch)
print('ZSL: AP=%.4f' % (sum_f1_best_ZSL_AP))
print('ZSL K=5 : f1=%.4f,P=%.4f,R=%.4f' %
(sum_f1_best_ZSL_F1_5, sum_f1_best_ZSL_P_5, sum_f1_best_ZSL_R_5))
print('ZSL K=3 : f1=%.4f,P=%.4f,R=%.4f' %
(sum_f1_best_ZSL_F1_3, sum_f1_best_ZSL_P_3, sum_f1_best_ZSL_R_3))
##saving results to csv file
fname = 'CLF_result_F1.csv'
row = [opt.nepoch, sum_f1_best_GZSL_AP, sum_f1_best_ZSL_AP, sum_f1_best_GZSL_F1_3, sum_f1_best_GZSL_P_3,
sum_f1_best_GZSL_R_3, sum_f1_best_ZSL_F1_3, sum_f1_best_ZSL_P_3, sum_f1_best_ZSL_R_3,
sum_f1_best_GZSL_F1_5, sum_f1_best_GZSL_P_5, sum_f1_best_GZSL_R_5, sum_f1_best_ZSL_F1_5,
sum_f1_best_ZSL_P_5, sum_f1_best_ZSL_R_5, opt.summary]
with open(fname, 'a') as csvFile:
writer = csv.writer(csvFile)
writer.writerow(row)
csvFile.close()