-
Notifications
You must be signed in to change notification settings - Fork 7
/
Restaurant Data Analysis.twb
680 lines (679 loc) · 41.8 KB
/
Restaurant Data Analysis.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20181.18.1008.2110 -->
<workbook original-version='18.1' source-build='2018.1.6 (20181.18.1008.2110)' source-platform='mac' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<SortTagCleanup />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='restaurant_info' inline='true' name='federated.0wl725c03snk1o11tcfxu1c38vwm' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='restaurant_info' name='textscan.1po314a0e6vmvd11hjuwb1ens2o0'>
<connection class='textscan' directory='/Users/akshitjain/Desktop/Data-Analytics-Projects/NLP-reviews-application/restaurant-reviews/data' filename='restaurant_info.csv' password='' server='' />
</named-connection>
</named-connections>
<relation name='Pivot' type='pivot'>
<columns>
<column datatype='string' name='Pivot Field Names' />
<column datatype='integer' name='Pivot Field Values' />
</columns>
<tag name='Pivot Field Names'>
<value name='[Average Review Count]' />
<value name='[Excellent Review Count]' />
<value name='[Good Review Count]' />
<value name='[Poor Review Count]' />
<value name='[Terrible Review Count]' />
</tag>
<groups>
<group name='Pivot Field Values'>
<field name='[restaurant_info.csv].[review avg count]' />
<field name='[restaurant_info.csv].[review excellent count]' />
<field name='[restaurant_info.csv].[review good count]' />
<field name='[restaurant_info.csv].[review poor count]' />
<field name='[restaurant_info.csv].[review terrible count]' />
</group>
</groups>
<relation connection='textscan.1po314a0e6vmvd11hjuwb1ens2o0' name='restaurant_info.csv' table='[restaurant_info#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='string' name='restaurant name' ordinal='0' />
<column datatype='real' name='latitude' ordinal='1' />
<column datatype='real' name='longitude' ordinal='2' />
<column datatype='string' name='street' ordinal='3' />
<column datatype='string' name='city' ordinal='4' />
<column datatype='string' name='country' ordinal='5' />
<column datatype='real' name='rating' ordinal='6' />
<column datatype='string' name='price' ordinal='7' />
<column datatype='integer' name='review excellent count' ordinal='8' />
<column datatype='integer' name='review good count' ordinal='9' />
<column datatype='integer' name='review avg count' ordinal='10' />
<column datatype='integer' name='review poor count' ordinal='11' />
<column datatype='integer' name='review terrible count' ordinal='12' />
<column datatype='integer' name='positive review count' ordinal='13' />
<column datatype='integer' name='negative review count' ordinal='14' />
<column datatype='integer' name='total reviews' ordinal='15' />
</columns>
</relation>
</relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[restaurant_info.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_US"</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_US"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>restaurant name</remote-name>
<remote-type>129</remote-type>
<local-name>[restaurant name]</local-name>
<parent-name>[restaurant_info.csv]</parent-name>
<remote-alias>restaurant name</remote-alias>
<ordinal>0</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>latitude</remote-name>
<remote-type>5</remote-type>
<local-name>[latitude]</local-name>
<parent-name>[restaurant_info.csv]</parent-name>
<remote-alias>latitude</remote-alias>
<ordinal>1</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>longitude</remote-name>
<remote-type>5</remote-type>
<local-name>[longitude]</local-name>
<parent-name>[restaurant_info.csv]</parent-name>
<remote-alias>longitude</remote-alias>
<ordinal>2</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>street</remote-name>
<remote-type>129</remote-type>
<local-name>[street]</local-name>
<parent-name>[restaurant_info.csv]</parent-name>
<remote-alias>street</remote-alias>
<ordinal>3</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>city</remote-name>
<remote-type>129</remote-type>
<local-name>[city]</local-name>
<parent-name>[restaurant_info.csv]</parent-name>
<remote-alias>city</remote-alias>
<ordinal>4</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>country</remote-name>
<remote-type>129</remote-type>
<local-name>[country]</local-name>
<parent-name>[restaurant_info.csv]</parent-name>
<remote-alias>country</remote-alias>
<ordinal>5</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>rating</remote-name>
<remote-type>5</remote-type>
<local-name>[rating]</local-name>
<parent-name>[restaurant_info.csv]</parent-name>
<remote-alias>rating</remote-alias>
<ordinal>6</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>price</remote-name>
<remote-type>129</remote-type>
<local-name>[price]</local-name>
<parent-name>[restaurant_info.csv]</parent-name>
<remote-alias>price</remote-alias>
<ordinal>7</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>positive review count</remote-name>
<remote-type>20</remote-type>
<local-name>[positive review count]</local-name>
<parent-name>[restaurant_info.csv]</parent-name>
<remote-alias>positive review count</remote-alias>
<ordinal>8</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>negative review count</remote-name>
<remote-type>20</remote-type>
<local-name>[negative review count]</local-name>
<parent-name>[restaurant_info.csv]</parent-name>
<remote-alias>negative review count</remote-alias>
<ordinal>9</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>total reviews</remote-name>
<remote-type>20</remote-type>
<local-name>[total reviews]</local-name>
<parent-name>[restaurant_info.csv]</parent-name>
<remote-alias>total reviews</remote-alias>
<ordinal>10</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Pivot Field Names</remote-name>
<remote-type>129</remote-type>
<local-name>[Pivot Field Names]</local-name>
<parent-name>[Pivot]</parent-name>
<remote-alias>Pivot Field Names</remote-alias>
<ordinal>11</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Pivot Field Values</remote-name>
<remote-type>20</remote-type>
<local-name>[Pivot Field Values]</local-name>
<parent-name>[Pivot]</parent-name>
<remote-alias>Pivot Field Values</remote-alias>
<ordinal>12</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column caption='Categorical Review' datatype='string' name='[Pivot Field Names]' role='dimension' type='nominal' />
<column caption='Categorical Review Count' datatype='integer' name='[Pivot Field Values]' role='measure' type='quantitative' />
<column caption='City' datatype='string' name='[city]' role='dimension' semantic-role='[City].[Name]' type='nominal' />
<column caption='Country' datatype='string' name='[country]' role='dimension' semantic-role='[Country].[ISO3166_2]' type='nominal' />
<column aggregation='Avg' caption='Latitude' datatype='real' name='[latitude]' role='measure' semantic-role='[Geographical].[Latitude]' type='quantitative' />
<column aggregation='Avg' caption='Longitude' datatype='real' name='[longitude]' role='measure' semantic-role='[Geographical].[Longitude]' type='quantitative' />
<column caption='Negative Review Count' datatype='integer' name='[negative review count]' role='measure' type='quantitative' />
<column caption='Positive Review Count' datatype='integer' name='[positive review count]' role='measure' type='quantitative' />
<column caption='Price' datatype='string' name='[price]' role='dimension' type='nominal' />
<column caption='Rating' datatype='real' name='[rating]' role='measure' type='quantitative' />
<column caption='Restaurant Name' datatype='string' name='[restaurant name]' role='dimension' type='nominal' />
<column caption='Street' datatype='string' name='[street]' role='dimension' type='nominal' />
<column caption='Total Reviews' datatype='integer' name='[total reviews]' role='measure' type='quantitative' />
<column-instance column='[Pivot Field Names]' derivation='None' name='[none:Pivot Field Names:nk]' pivot='key' type='nominal' />
<drill-paths>
<drill-path name='country, city'>
<field>[country]</field>
<field>[city]</field>
</drill-path>
</drill-paths>
<layout dim-ordering='alphabetic' dim-percentage='0.37931' measure-ordering='alphabetic' measure-percentage='0.62069' show-structure='true' />
<style>
<style-rule element='mark'>
<encoding attr='color' field='[none:Pivot Field Names:nk]' type='palette'>
<map to='#59a14f'>
<bucket>"Excellent Review Count"</bucket>
</map>
<map to='#e15759'>
<bucket>"Terrible Review Count"</bucket>
</map>
<map to='#edc948'>
<bucket>"Good Review Count"</bucket>
</map>
<map to='#f28e2b'>
<bucket>"Poor Review Count"</bucket>
</map>
<map to='#ff9da7'>
<bucket>"Average Review Count"</bucket>
</map>
</encoding>
</style-rule>
</style>
<semantic-values>
<semantic-value key='[Country].[Name]' value='"United States"' />
</semantic-values>
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 1'>
<layout-options>
<title>
<formatted-text>
<run bold='true' fontcolor='#555555'>Restaurant by Running Sum of Categorical Review Count</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='restaurant_info' name='federated.0wl725c03snk1o11tcfxu1c38vwm' />
</datasources>
<datasource-dependencies datasource='federated.0wl725c03snk1o11tcfxu1c38vwm'>
<column caption='Categorical Review' datatype='string' name='[Pivot Field Names]' role='dimension' type='nominal' />
<column caption='Categorical Review Count' datatype='integer' name='[Pivot Field Values]' role='measure' type='quantitative' />
<column-instance column='[Pivot Field Values]' derivation='Sum' name='[cum:sum:Pivot Field Values:qk:1]' pivot='key' type='quantitative'>
<table-calc aggregation='Sum' ordering-field='' ordering-type='Field' type='CumTotal' />
</column-instance>
<column-instance column='[Pivot Field Names]' derivation='None' name='[none:Pivot Field Names:nk]' pivot='key' type='nominal' />
<column-instance column='[restaurant name]' derivation='None' name='[none:restaurant name:nk]' pivot='key' type='nominal' />
<column caption='Restaurant Name' datatype='string' name='[restaurant name]' role='dimension' type='nominal' />
<column-instance column='[Pivot Field Values]' derivation='Sum' name='[sum:Pivot Field Values:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<manual-sort column='[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:Pivot Field Names:nk]' direction='ASC'>
<dictionary>
<bucket>"Excellent Review Count"</bucket>
<bucket>"Good Review Count"</bucket>
<bucket>"Average Review Count"</bucket>
<bucket>"Poor Review Count"</bucket>
<bucket>"Terrible Review Count"</bucket>
</dictionary>
</manual-sort>
<aggregation value='true' />
</view>
<style>
<style-rule element='cell'>
<format attr='font-weight' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:restaurant name:nk]' value='bold' />
<format attr='color' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:restaurant name:nk]' value='#000000' />
<format attr='font-size' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:restaurant name:nk]' value='11' />
<format attr='font-size' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[sum:Pivot Field Values:qk]' value='10' />
<format attr='color' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[sum:Pivot Field Values:qk]' value='#000000' />
<format attr='font-style' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[sum:Pivot Field Values:qk]' value='normal' />
<format attr='font-weight' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[sum:Pivot Field Values:qk]' value='normal' />
</style-rule>
<style-rule element='field-labels'>
<format attr='font-size' value='11' />
</style-rule>
<style-rule element='label'>
<format attr='font-size' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[cum:sum:Pivot Field Values:qk:1]' value='11' />
<format attr='color' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:restaurant name:nk]' value='#000000' />
<format attr='text-orientation' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:restaurant name:nk]' value='-90' />
<format attr='color' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[cum:sum:Pivot Field Values:qk:1]' value='#000000' />
<format attr='font-size' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:restaurant name:nk]' value='10' />
<format attr='font-weight' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:restaurant name:nk]' value='bold' />
<format attr='font-weight' field='[federated.0wl725c03snk1o11tcfxu1c38vwm].[cum:sum:Pivot Field Values:qk:1]' value='normal' />
</style-rule>
<style-rule element='worksheet'>
<format attr='display-field-labels' scope='cols' value='false' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:Pivot Field Names:nk]' />
<text column='[federated.0wl725c03snk1o11tcfxu1c38vwm].[sum:Pivot Field Values:qk]' />
</encodings>
<customized-tooltip>
<formatted-text>
<run fontcolor='#787878'>Categorical Review:	</run>
<run bold='true'><[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:Pivot Field Names:nk]></run>
<run>Æ </run>
<run fontcolor='#787878'>Restaurant Name:	</run>
<run bold='true'><[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:restaurant name:nk]></run>
<run>Æ </run>
<run fontcolor='#787878'>Running Sum of Categorical Review Count along :	</run>
<run bold='true'><[federated.0wl725c03snk1o11tcfxu1c38vwm].[cum:sum:Pivot Field Values:qk:1]></run>
<run>Æ </run>
</formatted-text>
</customized-tooltip>
<style>
<style-rule element='mark'>
<format attr='mark-labels-show' value='true' />
<format attr='mark-labels-cull' value='true' />
<format attr='mark-transparency' value='198' />
<format attr='has-stroke' value='true' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.0wl725c03snk1o11tcfxu1c38vwm].[cum:sum:Pivot Field Values:qk:1]</rows>
<cols>[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:restaurant name:nk]</cols>
</table>
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' maximized='true' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
<card pane-specification-id='0' param='[federated.0wl725c03snk1o11tcfxu1c38vwm].[none:Pivot Field Names:nk]' type='color' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
</cards>
</window>
</windows>
<thumbnails>
<thumbnail height='192' name='Sheet 1' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO2daXAbV3bv/93YNxIgCYI7wU0kRWqhSC2WJZuSZcmWPd7XGVtjW568ZOZN
UqnkVb2ql1Qm9SqZqXqVV0kmH+IkM+PReHmOM5Ys25JGiyXLWiiJFEVxJwVx3wECIABiaXT3
+wABIgx2N0Bxgaj+Vbksog8ap5dz77nnnnsuwbIsCxGRBxRypRUQEVlJltQAWJYFwzBL+RMi
IveE2AOIPNCIBiDyQCMagMgDTeIGMMev9/l8IT+fpuEPUAAAv88PMbAkcr8gTfQL//W7f0PA
tBbbc6U43dgFXUY+gtZeOLws6h+qxTeNbUhJz8Ebzz+5FPqKiCwqRKLzAJR3Bl83d0BmncaW
/U/i3Oe/Bys1oLrYgD+cbsJr//1dXPzySzz57FNgGAYsy4IgiKXSX0TknkjQAFjc7ryBr5s7
UZObhmlCh8lxOwjvBBQqLYwpWszIdZiedOLAa98Dy7JgWRYkef8NNb65dQYjziHO4yZdNh5b
s28ZNRLG7XchQAc4j8tIGXTKlGXUKPlJ2AWSqVKws7YWBeYiDPVZsGPbVgQ8Dky7fDDn58LS
242sh7Yuha7LyohzCN2TnZzHA0HuF22l+Lz1v9Az1cV5vDi9FD/c8qNl1Cj5SdAACOSbSyJ/
ramoBACo5BlINYQ+K11TsVi6iYgsOfefbyIisoiIBiDyQJPwGEBkdRBkggjSQV4ZpUy5TNqs
HKIBPKBc6b+Ik93HOI+TBIm/eeLny6jRyiC6QCIPNKIBiDzQiAYg8kAjGoDIA82CDYCm/Ohs
a4MvEIRzegqW/iGwLIPerk64Zv2LqaOIyJKx4CjQ+eNnoMwx4b+++ALMzBSUShVGbqVjmlHi
QnMn3n79hcXUU0RkSViwAWQYdWjr64fL5kBBTgmqitNw4lQjXv/pu7jw5TEwDBPJBr0f1wWH
dec8zjIIBvnj6MsNcyf5kPM4c1dnoetjwSbd9S0FCzaAnMI8dA2OwFxRAXt/O06MWrBj53p8
fOh9pBryQJIkCIK4b7NBw/pzHidISKXJNY1CEgS/zuRdnYWujyCIpLu+pWDBV5iWbcZzL+RB
KpMBzEOgGRZSqQTlG2ofiBsnsjpY8JtKEARkMlnoD5KE9E4jH/lMROQ+4P7zTUREFhHRAEQe
aEQDEHmgEQ1A5IFGNACRBxrRAEQeaEQDEHmgiTGA7u5uBAIB3Lx5875MYRARSYSoiTCKovDe
e+/BbDZDrVajurqa84ssw8A544RGmwI2GMBsIIhUnRYOux3alFTIpJIlV15E5F6JMgCZTIZ3
3nkHV65cQVpaGu8Xm89+hVseCTyOWZDUBAKMFDVV5bjZNwZSpsFbrzyzpIqLiCwGMakQfX19
qKurg9Fo5E2WUmk0GG3thi7FAGNGBaqK0/CH0014/acHceHLr8Rs0BVAzAZNnBgDWLduHRoa
GjAyMoLs7GzOL1qn3SiuKMb0hA2OaQu+mR7EptpiHD18GGCVYjboCiBmgyZOzBXSNA2/348r
V67giSee4LxJO554CtPTdmhT9QAdwKw/CH2KDqXTNujCdRJFRJKcGANgGAZ+vx9KpZK3iyRI
CdIzMkJ/yKRQ3KmhlJaesSSKiogsBTG+iUajQTAYRHV19X3puoiIJELMG37p0iU8/fTTGBoa
Ak3TK6GTiMiyEWUAwWAQ9fX1aGhowLp16yCRiLF8kdVNlAFYLBa0trbi5ZdfRldX130ZvhQR
SYSoQXBRURGOHz+O1tZW5OTkLNoY4OuekxhyDHAez9JlY1/l04vyWyIiiRBlAHK5HH/2Z38G
AIu6sd24awy3bbc4jzOs2NOIrAwxYdBbt27h0qVLKCoqws6dO8UdHkVWNTE+TiAQgMfjgc1m
Wwl9RESWlRgDyMrKwuzsLK5cucI7ETYxOoQLFy6grbsXEyN9uHajHSxLo+HiN7A6PUuqtIjI
YhHjAjmdTuTn5+P73/8+r/uTojegKNeNsxc6ANYOoyEFp4Z6oMgpxZdfHcdb339pSRUXEVkM
Ygygp6cHg4OD+Prrr/H6669zzgWo1Fq0XG3Hk8/txeWvr2KNOR0nTl/D9598Dq7BgahsUFYo
85BJvsxDMRs0+Z7JUhBjABUVFWhsbIRSqeQNg9J+DwK6FKRpdfDNjuBUwwD27tuGj3/7G5iy
S6KyQQmhzEMy+TIPxWzQ5HsmS0HUFY6OjmJgYAAZGRmgaTr08nLcJIlCg+f27wUAvPjam2AY
QCIhYS6vEnOIRO4bot7U7OxsZGVlQafTYdOmTXGHQAmChEQSOpVEIhFDpyL3DVEGQBAETCYT
fD4fDh06JKZCiKx6YnwVu90OrVaLd999V3RlRFY9MW94a2sr7HY7zp07J6ZDi6x6YgzgoYce
AkVRSE9PF9OhRVY9UQbgdrvxr//6ryAIAkNDQ7xxYhGR1UCUAYyNjUGr1aKlpQVr164Vozki
q56oeYCCggLs27cP+/btg0KhWCmdRETmpXeqGy7/DOfxVKUeJRllCZ0zygAYhoFOpwsdeABm
AUXuLy72fYM+m4XzeHlmZcIGEOUCzczMoKWlBZcvX8aNGzd4v8iyDPotvbDaZzBjt6JvcAQs
y8DS0w23V9wpXuT+IKqZN5lM0Gq1OH/+PDIyMrBv3z7OcUB/y1VcHwlg66YUHDtxBHKFCsMm
I6YoGZxNHXj79eeX5QJERO6FGD9HoVCgvr4ebW1tvFGg/lsWMBINGq5cQnp6GaqKDThxqgnf
/+lBfPudneLFbNDlYbVng7JM/NcXLzEGQBAE6uvroVKpeKNARdVr0H21BzpI4adv4fgoix07
1uOjQ+8jVZ8rZoOuAKs9G5Qg47++eJm3Bzh06BBIkkR9fT3nF80Vm/FuyUZIpFKAZRFkGMik
UlRsrEu6GyciwkXUIHh8fBxerxcAkJaWJjgRJpXJQBAECJKE7M5LL7vz2WrA63RjqHsCAbcX
g+3DmHX7Mdg2CL9fTBFZLUQ11UajEaOjo3jhhReg1+tXzYu8UDovdYFggIleAimFWZjqGITV
TcFqHUDFC2tWWj2RRSCqBwjn8v/iF7/A4cOHH/hUCAkbGlimFWcDDjuG+m0Aw0Dc/Wn1EOOs
5+XloaqqCgaD4YHvATJLTLBNeKCUsJhmJCjfVopxyyQyS5K3BHxfYw+s47NIz9ZhetQBfZ4R
s1M2yIwmFO8pjZL1OVzoaRqCeVMRJm+Po2hDAW5fuwVFugHm8qwVuoLlJcYAzp8/j/r6epw8
eRK7d+9+oAe02eX5yC4P/TunPBcAYCxI3pcfAGasM3DbPZAQNNw2N0zVpSC9szAUpcfITvWN
ggaFoVtjsN+2IrfUCOuwE5VleSug+coQkw69d+9eNDY2oq6uTkyHvg9hgixS9Wq4XBQy8lPh
dbjh9NDQp8bmdvk9fuiNKWBZEoYMDVhSguLNRWi/0LMCmq8MMc37uXPnMDU1hXPnzqG9vR1v
vfXWCqglslA27K9FMEBDJpeA8gchU8oANgfzebOFNaWw3BxB4ZosjN+mYZ+Ygd/pRvm2kuVX
fIWIMYDc3Fz09vaipqYG6emx3aZIckOSJOTKUMcuV8lDH3IM5WQaNSoeCiWP6dJ1dz41LbGG
yUWMAeh0OlRXV0Ov16Ourm4ldBIRWTZiDMBqteKrr75CYWEhrwHMWEdx5MtzqN64GW5bN/on
vXjuyXr8/rPDKNu4Azs2rV1SxUVEFoMYA9BoNPi7v/s7wWS4saFuINWEgoIMnLd0Y3NZDn7/
8efY+8bbaDjxBdiayrvJcAJJWizLJt0C/NWus6AskvD6BJPhEtc5ygAoisKhQ4dQUFCA9PR0
bN26lfOLeWW10Bid+PLol9BrU0AHCchJEjRNgaVDpw3PIwjNJhACSVwrg4A+yahzHPpEdE5E
NkkQ0ocgEtc5ygBkMhn+6I/+CEeOHIHX6+UtjWi3TuDK1Was2/ww4BpGj9WBF958GUc//wwV
tTuivxfHy5JsNYiEbiaBJNQZAjoTRETnRGSTBqFnsgCdY1ygrq4u5OXlwW6383Y3eeYy5JnD
y8+KUXvnX6++/kZCCoiIrCRRBuD3+7Fhwwbo9XpcuXIl+VoAEZFFJuoNHxgYQHd3N1JSUnD7
9m2xNqjIqifKAIqLizE6Oopf/vKXKCsrE3sAkVVPlAtE0zReeeUVwc0xRERWC1EG0NzcjPff
fx9bt25FZmYm9u/fn3ShMBGRxSTKALZu3QqtVoupqSmYzeYVUklEZPmI2SBjaGgIDMPg6NGj
izoIHrp5G81nOjHRO4rGo43ovHALDUevw9I2sWi/ISKSKDGOvtlsRmdnJwwGw6KOA0YtY2D9
ASgNWvhdXgR8PrjtHnjcgUX7DRGRRImZCKusrERlZeWi/5DBmAqXM4DBrgnoM3WwT7tgyEsD
QSdX8SWRB4sYA7hw4QKuX7+OzMxMvPLKK7y9QMf1i2AN5fCO38TtiVl8b+8jOHL4M1TUPoqa
iqIo2bKHq8AEGZBSEgzNQCKVgA4yICVitElk5YgxAJfLBaVSCY1Gw/tFv8eBa80tSMtPR8Ax
g4oCAw5//Bm2PfcSGs+cxMZy85yMw1BKBSkNveykhATLsiAlRORYsk26sSwEsiWTUGcI6Myy
EZ0FZcEm3fVB6JmwiescYwBerxfV1dUwGo28IdCr50+DYoDu7g6U5SqgkKngmw1ArVJCeue0
d1Oh+ZUQSs1dGQSVTj6d49AnrHM8uifb9QnpI9RozUeMAdTU1KChoQEOhwOlpaXzfQcAsOOJ
F7HdZ0dbXxAz49fReHsIL735Ag5/eghrNj4UycwLZ5QKZfEl2wL8RHTumujAjZEmXtlXa5Y+
STARnYXqiCblMxGsDZq4zjEGQJIkJBIJmpub8cQTT3D+IEEQkKjSsGEtgLVPRD7/4Q/fSUiB
1cD0rBWdE22cxwnBFREiK0WMAfj9fkxPT0MikSRdFygi4hyxYmrcA1OhHqMWKzJy9bCPO6HP
M6I8M/HzxewSGQgEUFBQgMrKSjEfSCTpsDQPQ61Xgw4y0MooTDsYKBg/3N6FLd+MesNHR0fR
0dEBi8UCq9WadGtCRUQK1uVgrP02xoessHllKFmbjklbEIXm1AWdL8oFKikpQX9/Px5//HEM
DQ0l3SBIRIT2B6A1ZSI1VY4Zhw8zNg+KNpkXnLQZZQASiQQPP/wwbDYbDAYDKIqCXC5fFMVF
FsbFvvOgGe7ZcnNaMQoM5uVTaIUxrcmLlO5ajPK985ZG9Pv9aGpqQnFxMQ4ePLgIPyOyUM71
nkKA5s6X2l2294EygMUmZpRbVFSEoaEhVFRUoLCwcCV0EhFZNmIMgKZpkCQJmUyG3bt3r4RO
IiLLRowL1NfXh3Xr1iEzM1NcDSay6ompDLd+/Xp0dnbCZrPxfnFy0IKzDY1I1eeBpMYwZPPh
2X2P4vDRr1BUtQV7tm9aUsVFRBaDKAOw2+2wWq1wu92CrX9GbgFM+g6Mex2Q02rsqM7F4U+P
43vvvIvLx74Aw2yMf6NsNvk2ZWaE6lDO0ZkWuD4AC74+oUTBqM2vxY2y722j7MzMTNy8eROj
o6MwmUy8pRE9bh+qNmxC5xfHYdLp4fZokKZVY8Y5Az8liS7DJzCjnIyJVyQpUMpxjs6SJby+
eEpKzk1wi1v2PnwmidyLeIkZAwQCAdA0LfhjM9MTuHqjFTsf2QfSN4GBKTe+9/qLOHH8GGp3
bI98P2yxwoVNk2+8kYjOS3l9S6XHffdM4ih+e0/FcQGgtrYWXq8XKSkpvCfLLSrF80XhdOl8
hHcDeOa5FxNSQERkJYkxgEuXLqG8vFzcHknkgSDGEayqqsKVK1fQ0NAgpkOLrHpiDIAgCASD
QXR0dKyEPiIiy0qMAUgkEqhUKlAUJfYAIqueqDEAwzAYGhrCtm3bkJ+fvyJRgJ7JTtwYuc55
nCCAlzf+YBk1EqEZGrMBD+dxgiCgVeg4jyczUQYwNjaGvr4+fP7553j++edXxACsHivax2/y
yogGsLyMu8bwb5d+yXlcLpHjf+3938uo0eIxb21QhUKBwcFB0QUSWfVE9QA5OTn467/+65XS
5b5mZtyKWy2jMG8wY/hmP4xluXAOjkNhTEPx2pyVVk+EA3HV+yKhyUhFqk6C4e5BeAKAVq9G
3rp8WAemV1o1ER5iJsLiZaqvFycbriE3bw0k1Dj6Jn14/sl6/P73n6GsZicerln8ArvJjM/l
g1KvgXPYg+LqbHSc6wDDMFj3+Pp7PDOLW5e7EYAMWjXg8rDIyFBirN+OikcfrHu8FCzYAHSm
PDy1LwVHT1+GViLF5tJs/P6jI3g8vFP8xooF7RTPsvxZigSIZalWkYjODMOCYFl4ZxmUby3C
xK1xVD5agenBKczYXNCmKBasM8sCOZW5aL/UDce4BCkaArJiI2jfKGacATAsE//u7wvcKV4w
c5RF0j2TeFmwAbinB/DlmRt46ZXv4fRXp0HTBKQECYYOJr5TPIg5skI7tC9Xklb8ehAEoDLo
UFIbCgUWbQpVxtYZCu+ILnxXeQIsWr9uQ8lDa8HMutF56TbSZgNIMSjhdQeiz71EO8ULSi7T
M4mnwt49J8PFi9PqglojR0dnP/Jy9eietOPFAy/h8yP/lfhO8cSc9Nwk2VVeeKf4OeneS6kz
QaBwfSH8Li/kCgkq6quglLEIGNKQV5iy4N3fE5IlSYF7sTzPZFl2io+Xko2bUbJxc+Tvujv/
f+37by70lCLzQiCrNDvm09TFqAkiIkaBRB5sRAMQeaARDUDkgUY0AJEHGtEAROKCpgJoPd2K
we5JDLfeBsuw8ExOY+j2/T3TveAo0FIS8HjR1zKM7DUmjPVOwFicBefQJFLyTEjP0i74vP/v
+u9A8dTZ3JC7CetzagAAWglgkHJPuuh4jt0PlGlYaDO5S4gQBBnzt3l9PnraR5ChosHSQXQ1
DUGXkQqU3b8hqeQ0AB+F9CwV+ronkZWpQdvpG0gvL8R0Sz/Ss6oXfN7btl74g37O4/mGu7VQ
96TRCMq5XxCJ+v7eOyFVwkKp4jPi6GM05UfrBQs27l2HwMgwXFPToBkWkwPTYLctra5LSVIa
AO33or93But2FGPCMgatQQ/JrAuO6dmVVu2BhZTKkFOSgRnrDIK0DDJajs37N8Dr8t3XO6Dd
kwHMzctgWRYkSYJhmLhmRvkgJFKkGBSwTzjhcVPIrc6Fa8yGjbvFatUrhUQmh3lD7P1Xp6ii
/vYEPOizWXjPVZJRCpVMvaj6LZQFG4BjYgD/5zef4Wf/489w4vOPMGqn8PTjO/DFia+RV7oO
T+/evmClUkzpSDGFyrJkFYe2QzAVpC34fCLLh9U9iU9vfMgr89+2/xSq1PvcADT6TOzYVg2G
9oMmjHis1oAvD5/FS//tR7j41VEwDBPJInwijcJuGffgU6ah4q5ZCSxhnU16bp3N+OuZ0nT8
OnspLyy2Hl7ZorRSaOSauHSm59TD3KQLooShOGV1umDMfXZOu3D4dB+21eXhxs0xmPLSsasu
C8Dc6wsmcC9owXtB0/SCnqEMDJQE907wUtxjbdBEkEjlIJggKJpFwDuNyWkS2ZkpGB0bg8sX
SkoiCAIsy0IpISCVcrtEEgkJqTSkCimQeAUgIpsoQq4ZOVcPggRDEGi61o9r3dPY9bAZ314d
xs6Hi1GepwVBEBFZiUQoWeyurMvjxOHW/+TV852tf4xUdWpcOkvIuzoXqggEecbmEvXde0ff
uc+WnikUF6Xj8s0JVOdp0DLgxO7N2QDmXp9UMAntrqxE8PlJJJIFPcPnMlnQWu4LlGrZhM+7
YAOYsY6Cmg2io8uCLVs2YmDShadeqcfZUyexa+8jCz3tkjNrn0EQcrB+D+xWPzKyNJgcdiB3
bd688hOTsygwyvGvh5pRXm6E15tcFZPvlbXrc/GHsxZICAnkWg2CbidYxJECneR8azmH85Yz
nMflUgX+x+6/WrgB6E35+N7T+ZG/zXfKhO554qmFnnJZmLg1DIo0wJAhhXt0EpNdQWSvz4dU
Mv+cYFWlEV98bcHDm/PgC9C43W/HxjL9MmudGFNTLkxM+1CQl4r+AQcqKzIh45jylEglMBcZ
UV5iwK0+O557puK+f/kBgGaDvHurhU18WcOgdJDGlMOPrAw1PLMBaNTLvwOleUM+elvdmJmw
QZWVidxqJUZaB0CoNUBFrHxeQTre+r4eGpUUnlkKapVs2XVOFJZl0dI4gKstCuSZNBiY8uN7
j+bPKytXyLCxKrTF+rrKBWy1zgHloyBVSMEEg2AJCSQEC5oBpLLo8uX/+w//CwzPmGFv+ZN4
qGhn1GetN4fR2DaF6ppc3Oy04eALC18auqwGcPp0D2a8fqTlG/HV6QH83/+58EgRADi9Dlzs
O88rs63wYaRp7hT6ZVkMd9tAUwykUhmCfj+8LoDUamA0qub9vkRKQisNNZ9azSIaLMug85tO
yNMMIAMezAalqNpWtCinNmZo4FepUKRXoLo6Cxeuji7KeeOF8vpw7v3LePSPduLGZxdh2rIZ
/uFbIAwmlFVHzxrTDA0W/Eszv8u69XnoGnCgIFuHmzcm70nXZTWAdIMK43YPZEESdYvgRswG
PLgycJFXZm1W9V0DIAjkrzPHyOSU37MqicNQsE65IPP4AZcXfloGLJIBzNg9eHhzIbI0DI6c
tWDHjlLhLy0iMpUSazYXACBRvsmMaZZFUV0ZBm85F+X8LpsThFoHjQSw2z0Yn/YiK23+Bgws
C+eUC9p0LbwODxQ6NWTyu73QshqAMVMLctiNdbkqnOgaRVufA9VFye1PLxWM3we5RgMCATAS
GRQECxrAd/c32ZXG8C70LlTFhgVT01OQesfmf/jiusVTOk6CPh+mJ2bA9k7AP+6EX8ZgxMHA
YaNAr43NG2JZFtb+SQQoFilpKjjtfuSWGjmjSQqdGt97VAeWCuKVZyuhkHHvCjPR1Y/xKS+Y
GTe8tApyOYm6J6six5fVAAqLMvBmUQYA4Cdv1S7imVl0nGuHIs0AknKB0GTAXJGxiOdffEh1
KgqKDZCm6EBSPvhoSczLDwDVWgZguGPfCvnCkvJknmxIRrdyCxAEIrueJIhUqUTNU6GkQlTc
Xc5p5vmOXK1A99lOrN25BtbOfijS9DCmz+9yyuV3xmFSOQpy+d1SkgCcY05oUpXw2WYgTU+N
1lXoYhJlMVIhEoX1ezDQa0PRRh1yctMwPOS953OqptaDnTRxC6RnRJ6oWcliXzpPZiVH1nl2
RTj0mjrv8aWEDKpA+ng2QVnG50cQBKSgkF5eAIVSCn+AhoRdnGRDuU6NlHQdtAYVCEigSY8u
4ruoBjAz2YePjpy851SIhJHKkW7SwTFuh05BwTbkQnBLPnjm3gQhGBkIWsktQN+NBqXLWWi1
fC0xdwu+mCimKyCf4jYmIi0TWEA6lYxgkSXnvgaZ5N5Tw2e9DEqrszHRPQSt0QDVPAEHktKA
9XFfH6mITa9IzTVhYy53Q7aoBtBytQ0vHQilQiwnhESODY9VgiUkIFgGaUXsvO7EakcS0AJ+
A7cAtbAS5uky4AfZPC0yee+Tg0Zz6CXNqy7E/FOSgMpaBdh46qzSGUBJYr+7qAaQnirDyOgY
XL7oz0lKB4mX+8FIpPdeW16h4YgCzCFbwYKScLdkujlWwzAOsPQ4pyzBLM9yOolPD/BM6BBB
4eueD5qeAO1v4hYgScjx2ILOfT+xqAZQsX0Pvj79B+zeVx/1uXK6HJjgyeYM3DUOOQloebrU
eKqDcfFiZhBguFsyhfaucVD+JtBe7o06SP9aKLEHACB3miHv28v9w3MGlJlyFj/N505YA4BU
xd3rV41WAzwJXoQuE7gzzvT7zoJ23+DWWbMWSmwCADDMFIIUzz4MBImwE0JSaqgmarhlJbJ5
JxEXG5oeBksNcx4nggFIsDGhcy6qAZASKfbsC6VCzM0GZTUqwMAz0NNqgDuhvvVqI6pyeCJE
xN3aoHqZFG8VF/DqlCmXR+Sl/iqAJ1sSlDEiG6ArQQU1nKJSOgeyO7JUwI6A5zavzppwTU7I
oFAX8+rMEnd1nnGNg6W4dVb6cqGI6FwOiqdHkNK5d3Wmc+AL7uSUBUlEzsuyACvhWYpKSiP6
GuUywWdikN2V/2FxAb67+mwu+hRtRNbjJRD0cDu3Mh+gviNboEnFo9lmTlkpKQvth80u0S4Y
c9N4440IMQwTd2m7pZIVdU4+2aW8viVzY8Oh0O/+BwDj4+OYmJjglQv/53a7MTw8jEAgIChL
0zRGRkbgcrl45QAgEAjA7/eDoihOuWAwiIGBAXg8nshno6OjCAQCvLq73e6InJDODMOgo6MD
wWBw3uMejwdTU1OYmpqKyASDQfj9fvj9frAsy3ne4eFhwd//7v2jaVpQLhAIYGxsjFPnubrP
vXdC/wFAb29vXN8BAJvNxvseeTwe+P1+TE9PR92XsbExOBwOEAQByc9+9rOfLbURzIWiKPzT
P/0Tent7sWHDBshksij57/LRRx+ho6MDJEkiNzeXV/bIkSM4d+4cHA4H1q5dyylL0zS6urrw
+eefw+FwoLS0NEo2LH/48GFYLBaMjo6ioiLk5LrdbvziF7+AxWJBdXV1lP5AqLX61a9+BZIk
YTQaoVQqo879XQ4fPgyNRoMrV67Mq/PAwAB+/etfw2azQSaTwWQy4fr16/jmm2/Q0dGBwsJC
qFSqmHMzDIN//ud/jlzf3BaRqyUdHx+H1+uFVqvllf3000/h9/thMpkgl8s5ZSmKws2bN6FW
q0HOWbfAdd7m5maMjIygoaEBNTU1UbLflXe73fjtb38LtVqNvLy8qOPhf7e2tqK7uxutra1Y
ty40I3727FkMDg5CoVAgIyNj+esCsSyLzZs3o6ioCCqVcARj/fr1kEqlWLNmjeBKI7PZjN27
d6OsrIxXTiqVQiqVwuv1wuFwcMpt2bIFdrsdGzZsiHx28+ZNvPPOO3jttddAze3SbVMAABaL
SURBVOObt7W1QSqVYmxsDF4v/4QcwzCoqalBe3s7Nm6cf/BWVlaGXbt2gaIo5OWFAoRyuRwa
jSbyYs0HQRAoLCyEQqHg1WGuLuHWX4iKigr09/fPe/1z0Wg0GBwcxLVr1zA+zh1RC1NWVoaJ
iQmsWbNGUFahUECv12NkZGTe94KiKKhUKgwMDEQ1cKWlpZiYmIDNZgOwAoWxGhoaMDU1BZ/P
F9fytatXryIQCOAf/uEfBDc/sFqtuHHjhqBhsSyLtLQ0pKWloaCAe8B2/vx5lJdHZ8oxDINv
vvkGVqsVOl1s+DYnJweDg4MIBoOR7pkLu92OiYmJyL7MXHR0dCA19W4QQaVSQX5ncM/VKNA0
jcnJSVy9ejWuTSOOHz+O3/72t4I6A8DkZCgDc3pauChWQUEBHA4H/H7ucjRhent74XK50N7e
LihLURT6+vrgcDjmvXcSiQRarRZKpRI+3924/MTEBJxOJ6xWK4AVMICHHnoIt2/fxtjYmGAL
AgBVVVWQy+V45plnBAc2ZrMZWq026oLng2EY/PKXv4RMJuNspQcHB+FyuWCz2aLOl52dDZ/P
h5mZmXm/p9frsXbtWtTV1aG6mr+GEUVROH78OAKBALq6ujjl0tPTEQgEIi97WVkZ+vv7kZ2d
HeOChQkGg9i+fTt27doFhieXKIzP58Pzzz+P7OzYUuzfxWQygSCIKKOcj/Hx8ciuLfHEWoxG
I0pLS7F3L09I+Q4KhQJmsxkymSzKDQtDkiTGxsaQn58f1QMUFhaCZVmkp4fSQJbdANxuN556
6imUlJRwPry59PT0IC0tDUVFRYIG0NfXh/7+fgwMDPDKEQSBffv24fXXX8euXbvmlfF6vfD5
fFCr1VG+69TUFAwGA0ZGRub9nkQiwdq1a/H+++/jN7/5De/Ll5WVheeeew40TSMjgz95r7Oz
E263G0Co5d25cycsFgtn697X14crV67A4XDE5QaNjY2hvb0dEgn/HDpFUTh79iwkEkmkFeUi
KysLTmf8KdAsy+LatWsYGxsTlPX5fLDb7TAajZzGVVRUhLa2NrS0tEQ+6+3tRXZ2duSeLHth
rHBXGE+XCIRa1LmtHx8lJSWgKAr5+fOvfgpDkiQeeughWK1WyOVyGAyxs9RKpRKPPPIISkpK
olwqjUaD/fv3z+v+hBkZGcGOHTuwZcsWQZ9arVZDIpFEIkvzUVBQgJGRkYjM6dOnUV5eDpPJ
hP7+fqxfH7sRH0EQ8Pv96OvrixgyH9XV1XA4HILjFolEgg0bNoBl2ajBMhd2u33eQex8aDQa
5OTkxPVunD9/HhKJhLe3v337Nux2O6ampgCEGt+Ojg5IJJKI97HsPcDly5fR3NwMp9Mp2NoA
QGZmJtxud1wtSfiC421B2tra8OGH89ewKSwsxJo1a6DX66MeiEqlwpEjR9Df38957pGRESiV
SiiVSsEHTxChigoul4tTprq6Gn/+538e6cq3b9+OxsZGjI6Ocg74zWYzCgoKkJ+fH1cPMDIy
gkuXLnG6dmFIkoTNZsP4+Dh+97vfCZ433IPGYwCjo6PQarUYHBwUlN25cydqa2uRlpbG2QuW
lpZiz549EbdOq9WisrISr732WqQ3XXYDqK2thUajgd/vj8s3BUJdY1hhPnJycuBwOJCSkiIo
63a7YyIEc/H5fPj5z3+ODz74AJcuXYp8PjIyApIkeQeLNE3zRmjChGP1jzzyyLy9UJhf//rX
OH/+fOQe5Ofn491338XBgwc5B/wkSWJgYCCq5+DTo6ysDD/60Y/iMpZt27bB5XLhhRde4JWb
mJiA0WiE1+sVDHgwDIOhoSEEAoGYwMN8qFSqyICWqxSKxWJBT08PTp48icuXLwMIRbA+++wz
6PWhhVjLbgCFhYV444038OMf/ziuHoCmaahUqqg5AC7GxsaQkZHB6Z/PhaIo3Lp1i9OVUSqV
ePHFF0HTdMSlGh4ehsVigVQq5Xy5/X4/Nm/ejJ6eHkEDp2kaw8PDaG5u5jREINQDNDY2YnY2
/tqocrkcO3bsgEQiERxr2Ww2nD17Fi0tLbyGGKahoQElJSXIyeHJzESo93744Ydx4MABeDwe
XtmwywZA0GABoLGxES0tLejr6+MMphQUFICiKOzfvx9GoxEA8Jvf/AYsy6K7uxvACu4PEK9f
ODo6Co1GE1ccOTs7GyzLorJSuEpASkoKNm/ezBuJGh0dhVqtRm9vLwBAJpOhtrYWJElyDlpP
nDgBu90OmqYj3+NibGwMZrMZTU1NuHbtGqfc1NQUaJoWHHTOxWazoaWlBdu3bxfsiWQyWcRY
+Vy7MEVFRZGZaT6cTid+97vf4dChQ5G4Oxcsy8LpdMLpdMY13ktLS0NNTQ1qamo4Ddxms4Gm
aeTm5qK0tBR+vx/bt2+H0WiMTLQlZXXoubz00ksYHByMy1g6OzuRmZkZ1+BMJpMhNzcX165d
Q319/bwye/fuhdvtjoTZMjMzkZmZCb/fjytXrszbVdfV1eHixYvYu3fvvOG5uRgMBhw9ehRv
vvkmZ6/l9XpRWVmJ2dlZFBbGv5rl5s2bKC4uRn9/f2QWlAuVSoXq6mp4vV4UFfEvzA/P4cTz
kur1ehw4cCAufQmCQFlZGWiajoQohfTYtm0brl+/zpn7Q5IkAoFA5FhY5+rq6kjjlNQ7xFgs
FnzyySc4c+aMYGwfCM3c3r59O66JH6fTiZGRkagp9+/S3d2N5uZm9PSEank6HA588MEH+M//
/M+oFIe55Obm4tFHHwVFUYJxcpVKhTfffBNpaWmoq6ubV+b06dP49ttvodfrBcO7cxkdHcX+
/fsRCAQEXQqFQgG73Q6LxYK+vj5eWZqm426QEoEgCDz88MN45JFHUFVVJShvMBjwt3/7tyBJ
cl5XOhAI4Ntvv8Wrr76Kc+fOAQi5hTabDX//938fcWuTugcoKSlBcXFx3Nl9jY2N2LNnD5qa
mlBSwr80yGq1Ynp6Gn19fdi+ff7lmzabDS6XK9LFGgwGPP/881Cr1bz++KlTp+ByuVBXV4fN
mzdzyjkcDrz33ntYt24dgsHgvIPK7OxsDA0NwWq1YsuWLbzXNJft27fj0KFDyM3N5TTWMBRF
YcuWLWhubkZxMX+qdlZWFsxmMy5evAin0xnXmGEpIAgCr732GpRKZSQhcC7hCbKvvvoqMtvP
MAxMJhNeffXViMuX1AYAAJ988gna2trwxhtvRBLSuKitrcXHH3+MF198kVcuGAxVO87MzORN
hVCr1RgbG4sYQCAQwM9//nNUVVXBaDTi8ccfn/d7GRkZUKvV88bnvyv3/PPP49q1a1GJcHOp
q6tDZWUl7Ha74KBzLiUlJZEIDMMwvAGHM2fOoKenB3q9Hv39/VG5T/OhUqmwZcsWQRdvKSkr
K4NOp0N3d/e8vRFBEHj77bejPpNKpaioqMCVK1dWbh4gUdasWYOioqK4ulylUon6+npcv869
kgsITebk5ubC6XTy9iw0TcNisUR+WyaT4ZlnnoFWq+VtKfv6+uByuQRj6kCoJ5JIJLxh3k8/
/RSNjY2RyEU8fPLJJ/jwww/xN3/zN4IuYbgVn52dFRw/uVyuSPQl3kS7pcDn8+Ff/uVfMDg4
yOked3R04K/+6q+i5itu3LiB1NTUyDgj6XuAjo4OKJVKpKUJb5BhtVrR29uL2lr+mkMMw6Cp
qQlKpZJz1nh0dBRXr16NuGBAqFWZmJhAV1cXFAoFp5tVXl6O9vb2uMJ54ckyPjfFbDZjZGQk
rjydMGlpaZiZmcG6desEw7Fbt27Fli1b4PV6BWeMdTod3nrrLVAUFVcqy1LR3NyMn/zkJ0hP
T+ecC1Eqldi5c2dU41JZWYlPP/0UMzMzyM7OTu4eoLW1Ff39/XG1/lNTUzh27FhkMMdHeLlm
fn4+56xxTk4OysvLodVqYbfbI5+XlJRArVbz9gA+nw+BQCCSNclHeFsprp6ou7s7kgoST/Jg
mMcffxwHDhzAwYMHBccAQOieCPWcc5k7ObgSbNq0CS6XC729vZzhWL/fD4/Hgx07dkQ+a2tr
A0VRkfSIpDaAiooKbNmyBbW1tYJpumE/1+12CxpMeCZ38+bNuH2bey1vUVERLBZLVC/R2tqK
TZs2cU6gtbe3Y3Z2FhkZGZH8fT7cbjdkMhmnC1ReXo6uri6kpKREHlo8BAIB/OM//iM+/PBD
wfweIHT/qqur44qgAaHZ4CVaTRsXTU1N+NWvfoUvvvhi3udN0zSkUil8Ph9u3boFIBQGra6u
xmOPPRYJ9ya1C+R2u9Hd3Q232y2YImsymfAXf/EXoChKcIZZIpGgrq4OH3zwAWc2KBAKw+bl
5aGvry8yMKysrMSNGzfAsmwkLfi75963bx/cbregCzQ1NYW8vDzIZDLOSFQgEMDu3bsxOTnJ
m4A33zVmZ2fD7/fH5at/9NFH8Hq92LJlCzZt2sQre/LkSXR1dWHPnj2cg/elpra2Fna7HTKZ
bN7eM7wmnWGYyGDd5/Ohvb0dY2NjkRyqpO4BDAYDtm/fjtnZWcFZVQC4cOECPvjgA5w9e1ZQ
trq6GgcOHIDZbOaUCS/mmDsB1d3djbKyMnz11Vfzuk9jY2O4fv06Ll++LJjAR1EUDh8+jBMn
TqCtrW1emfAaZ7fbnZAB0DSN6elpjI+P44svvhCULy8vB0VRvCkZYcxmM1iWjSs9ZamgaRpu
tzsyMfddpFIp7HY7ZmZmInMbKpUKaWlp6O3tjfReSd0DAIhMuccTb05JSYHVahUMP8ZLe3s7
tmzZEgk/UhSFmpoanDp1Cq+99tq8M5b19fXo7OxEfn6+4KxqdnY2/vIv/5JXxuFw4OjRo8jJ
ycHo6Kjg5FoYkiSh0+mg0+kE1xoAIdcuHPYVSiYM50M5nc649VlsHA4HpFIptFotZw9XWFiI
S5cuRc2EFxQUYM2aNZFxQ1L3AEBoZdaaNWvieojr1q3DO++8wzu7mwgbNmzA1atXI3lIMzMz
mJmZQU5ODnQ63bw3niAITE5OxpXTQhAETp06hQ8//BAdHR3zytTU1GDHjh1QKpWRDMZ4mZmZ
gcvlwtatPFWg75Ceng6CIHDx4kXBqJFKpYJMJsOZM9x7cC01DMPAZrNFtebfJWz8X3/9deSz
pqamSHgbuA8MoLS0FK2trXGlQx87dgwNDQ1xdfnx0NTUhNraWphMobqV09PTcLlcaG1t5V3C
qNVqcezYMfzHf/wH78s0Pj6OxsZGwUG71+uFVCqNO30cQCTKFQgE4ooe0TSN/v5+PPLII4Kz
7kqlEmNjY5wTgcvB0aNH4fF4OF22cKq5XC7Hq6++Gvm8pKQETz/9dCSEnfQuUHjFk1B8Gghd
3OXLlznzahKltrYW586dg16vh8lkgtFoxIkTJ3DgwAHe7NTJyUkUFRVh//79vC93VlYWHn/8
cXR2duL8+fMoKiqa9zoTWVcbhiRJkCSJH//4x3GFQfPy8uLK8ARCM+kKhSKu6NJS8ad/+qe8
x4PBIDweT6QyRdiD+Pzzz6HX6yPjuqTvAbxeL1wuV1zhud7e3pg1vPdCuFxJeICq1+vx05/+
FIWFhZxuxfDwMNrb25GSkoLe3l7B1t1ms0GtVkOpVM6b7Nbf3w+Hw4Hs7OyErosgCDgcDnz6
6adx9RwWiwVPPvmk4LgFCI2FfvSjHwnmDa0kwWAQ/f39sNvtUUa9f/9+eL3eSKQw6Q2gpqYG
ExMTggsqgNCa0mAwmJCrwAXDMKiqqkJXV1dc2Ylh1Go1XnjhBVRWVgqmIQNAamoqtm7dih/8
4Afzplc3NTUhPT0djY2NCUWBgsEgaJoGwzCCa2wpikJFRQWuX78uuOgmHP05efIk7zLOlUah
UGB0dBRKpRJDQ0ORz0mShN1uj1xnUhtAa2srent7cevWrbiiDSzLoqKiQnBRfDxMTEygra0N
KpUqIYNKS0vDxMQEbt26FVfdHJ1Oh2PHjuHWrVvz+t67d+9GZWUlXnnllbhW0IUhCALp6enQ
6/WCLtDx48cxOzsLm80WmTTiYnBwENPT05F08mQlXOjLZDJFNZ4+nw+FhYXo6OhAX19fchtA
ZmYm1Go1FApFXJUCioqK8O2338a1KF6I7OzsiNHNbUHiYWBgABcvXuStOhdGKpVCo9FwvngG
gwFOpxMNDQ1xBQLCHD16FAqFArt27RJ0w9auXRvJXeKbFwFCBt7Y2AiKopCZuXj7Ci82MpkM
Bw8eRG5uLl5//fXI5+EJspycHAwPDyf3INhkMuHll1+OqjTNx40bN/DYY4+hra0troXVQhgM
BkxOTiac824wGPCTn/wk7heEIAje2drh4WGMjIxgfHw8rnAwEHpRBwYGcPbsWTz77LO844fS
0tJIVETIWHQ6Hf7kT/4ELMsu2lhrqdBqtTHZrUajET6fD3V1daipqUnuHiAMQRCCoTmaprFh
wwZcunRJMJ89Hm7fvg2NRoNXX301oRwcIOR/Hz58OK41vHa7HRRFcWa79vT0QKlUoqCgIKH1
ALt378bbb7+NF198Ma4X9ciRI3j//ffR2dkpKHv9+nV8/PHHca0fTjZGRkZgtVojPe59YQDx
MDMzA7vdjqysrEUZBBuNRnzzzTd4//33E0pDBkI5TKmpqVFZpPMxPj6OU6dOQS6XY3R0/t3c
c3NzMTQ0hPz8fAwPc++Ocq+EB4vxjLVomkZnZ+eKrgdYCIFAABaLBbW1tXj22WcBrCIDCJcr
tFqt+Pd///d7HqDpdDr88R//Md599924ojlzSUlJgd/vF1xcYjKZ8NRTT4FlWc4JHY1Gg40b
N+L69etxhSgXQktLC6anp1FSUiK4ymt8fBwWiwVVVVVxzS8kEzKZDI8++ih6enrw3nvvAbgP
JsISoaioCFarFfv27VuU8y1k4feZM2ewa9cu2Gw2TE1N8botBEHAYrFwplWEaW1tRX19fUJR
oETYsGED+vr6MD09LTjfkpWVhcrKSrS0tCz6wvilJhgMor29HS+//HJkfLZqegAg1DqpVCpk
Z2evWKZiYWEhPvjgA3z55ZeCOjidThQXF0di9lzk5OTg2rVrCRXGSoSOjo5IYVyh8Y7VasUf
/vAHkCQZV62mZEImk+Gxxx6LSmNfVT1AvNGipaS0tDSyhllo4O73+zE0NASKonhTEOx2OxiG
SSgKlAhlZWWorq6G1WoVjFzp9XrU19ejubl5SXRZblZVD5Cbm5vw0sGlQCKRxFXGJTxQrqqq
4swGBUI9AEEQS9aryWQyjI2NwWQyCa7zlUqlGBkZQXFx8YpWhVgsVpUBjIyMICUlhTOikmyQ
JIn9+/ejvb2dN4W7paUFKpVqSWdeCYKARqOJy3BpmkZKSsqSjUmWk1VlAMXFxZiYmEBWVtZK
qxIXIyMjkfIizc3NnHJ79uxBampqwusBEqGgoABdXV1xZXhWVlaira1tRbNBF4tVZQAqlQql
paW8ufrJhMFgQEdHB6ampnhTEJqamtDc3LykyWdr165FSUlJXGkfRqMRaWlpi5JystKsmkEw
TdORlySeFVDJQGpqKg4ePMgr43Q6sXv3bnR0dCQ8IRcvfr8fFosFdrudt5QjEAo0eDweyGQy
3qp69wurpgcYHx/H7OwsKIridSfuN86cOQOLxQKZTBbXoqCFEN5NMp7ggcfjwcWLF2G1WuMu
oZLMrBoD0Ol0kQe4VDOmK0FdXV3cef0Lxe/3IxAIwOVyCa4IC5caWelw82Lx/wFzMwLV0XA2
KgAAAABJRU5ErkJggg==
</thumbnail>
</thumbnails>
</workbook>