-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyze_network.py
295 lines (247 loc) · 13.3 KB
/
analyze_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import glob
from argparse import ArgumentParser
from tools import *
def load_subdirectory_data(dir_exp, explo_type, run_index=None):
"""
Loads the data for the subfolders of dir_exp.
Inputs:
dir_exp - directory of the experiment
explo_type - type of exploration for which to load the data
"""
# list the subdirectories
search_base = "run*" if run_index is None else "run" + "{:03}".format(run_index)
sub_list = sorted(glob.glob("/".join((dir_exp, explo_type, search_base))))
print("{} runs found for the {} type of exploration in {}".format(len(sub_list), explo_type, dir_exp))
# initialize variables
var = {"all_epochs": [],
"all_losses": [],
"all_metric_errors": [],
"all_topo_errors_in_P": [],
"all_topo_errors_in_H": []}
for sub_dir in sub_list:
# recover the Tensorboard logs
log_file = glob.glob(sub_dir + "/tb_logs/*")[0]
event_acc = EventAccumulator(log_file)
event_acc.Reload()
# extract and store the variables
_, epochs, losses = zip(*event_acc.Scalars("loss"))
_, _, topo_errors_in_P = zip(*event_acc.Scalars("topology_error_in_P_1"))
_, _, topo_errors_in_H = zip(*event_acc.Scalars("topology_error_in_H_1"))
_, _, metric_errors = zip(*event_acc.Scalars("metric_error_1"))
var["all_epochs"] += [epochs]
var["all_losses"] += [losses]
var["all_topo_errors_in_P"] += [topo_errors_in_P]
var["all_topo_errors_in_H"] += [topo_errors_in_H]
var["all_metric_errors"] += [metric_errors]
# check that all runs are valid (they have compatible numbers of epochs)
to_delete = []
length_all_epochs = [len(x) for x in var["all_epochs"]]
max_length = max(length_all_epochs)
for ind, length in enumerate(length_all_epochs):
if length < max_length:
to_delete.append(ind)
print("!! Warning: the run {} has {} epochs values instead of {} - it is discarded".
format(ind, length, max_length))
# remove the entries that don't have the correct number of epochs
for key in var.keys():
var[key] = [val for ind, val in enumerate(var[key]) if ind not in to_delete]
# convert the lists to arrays
for key in var.keys():
var[key] = np.array(var[key])
# get the number of valid runs
number_runs = var["all_epochs"].shape[0]
print("{} runs loaded successfully for the {} exploration".format(number_runs, explo_type))
return var, number_runs
def read_and_display_results(dir_exp, log_scale=False):
"""
Plot the stats associated with an experiment. Compute the mean and std over all the runs in dir_exp.
Inputs:
dir_exp - directory of the experiment
log_scale - controls if the y-axis is set to a log scale for display
"""
# check that dir_exp exists
check_directory_exists(dir_exp)
# check which type of exploration exists
exploration_types = [name for name in ["MEM", "MM", "MME"] if os.path.exists(dir_exp + "/" + name)]
colors = {"MEM": "r", "MM": "g", "MME": "b"}
# prepare the figure
fig = plt.figure(dir_exp, figsize=(16, 4))
ax1 = fig.add_subplot(141)
ax1.set_title('loss')
ax2 = fig.add_subplot(142)
ax2.set_title('$D_{topo in P}$')
ax3 = fig.add_subplot(143)
ax3.set_title('$D_{topo}$')
ax4 = fig.add_subplot(144)
ax4.set_title('$D_{metric}$')
for explo_type in exploration_types:
# load all the data from the runs of the given type of exploration
var, number_runs = load_subdirectory_data(dir_exp, explo_type)
# compute stats
losses_mean, losses_std = np.mean(var["all_losses"], axis=0), np.std(var["all_losses"], axis=0)
topo_errors_in_P_mean, topo_errors_in_P_std = np.mean(var["all_topo_errors_in_P"], axis=0), np.std(var["all_topo_errors_in_P"], axis=0)
topo_errors_in_H_mean, topo_errors_in_H_std = np.mean(var["all_topo_errors_in_H"], axis=0), np.std(var["all_topo_errors_in_H"], axis=0)
metric_errors_mean, metric_errors_std = np.mean(var["all_metric_errors"], axis=0), np.std(var["all_metric_errors"], axis=0)
# plot the variable evolution for each run
for run in range(number_runs):
ax1.plot(var["all_epochs"][run, :], var["all_losses"][run, :], color=colors[explo_type], alpha=0.1)
ax2.plot(var["all_epochs"][run, :], var["all_topo_errors_in_P"][run, :], color=colors[explo_type], alpha=0.1)
ax3.plot(var["all_epochs"][run, :], var["all_topo_errors_in_H"][run, :], color=colors[explo_type], alpha=0.1)
ax4.plot(var["all_epochs"][run, :], var["all_metric_errors"][run, :], color=colors[explo_type], alpha=0.1)
# plot the stats
ax1.plot(var["all_epochs"][0, :], losses_mean, '-', color=colors[explo_type], label=explo_type)
ax1.fill_between(var["all_epochs"][0, :], losses_mean - losses_std, losses_mean + losses_std,
facecolors=colors[explo_type], alpha=0.3)
ax1.legend()
ax1.set_yscale("log") if log_scale else None
#
ax2.plot(var["all_epochs"][0, :], topo_errors_in_P_mean, '-', color=colors[explo_type], label=explo_type)
ax2.fill_between(var["all_epochs"][0, :], topo_errors_in_P_mean - topo_errors_in_P_std, topo_errors_in_P_mean + topo_errors_in_P_std,
facecolors=colors[explo_type], alpha=0.3)
ax2.legend()
ax2.set_yscale("log") if log_scale else None
#
ax3.plot(var["all_epochs"][0, :], topo_errors_in_H_mean, '-', color=colors[explo_type], label=explo_type)
ax3.fill_between(var["all_epochs"][0, :], topo_errors_in_H_mean - topo_errors_in_H_std, topo_errors_in_H_mean + topo_errors_in_H_std,
facecolors=colors[explo_type], alpha=0.3)
ax3.legend()
ax3.set_yscale("log") if log_scale else None
#
ax4.plot(var["all_epochs"][0, :], metric_errors_mean, '-', color=colors[explo_type], label=explo_type)
ax4.fill_between(var["all_epochs"][0, :], metric_errors_mean - metric_errors_std, metric_errors_mean + metric_errors_std,
facecolors=colors[explo_type], alpha=0.3)
ax4.legend()
ax4.set_yscale("log") if log_scale else None
plt.show()
return fig
def display_all_projections_of_a_single_run(dir_exp, explo_type, run_index):
"""
Display the motor states, motor representations, and sensory states associated with a trained neural network.
Inputs:
dir_exp - directory of the network model
explo_type - type of exploration for which to load the data
run - index of the run to display
"""
# create the path to the file
file = "/".join([dir_exp, explo_type, "run{:03}".format(run_index), "display_progress", "display_data.pkl"])
# check the file exists
check_directory_exists(file)
# load the data
with open(file, 'rb') as f:
data = cpickle.load(f)
# get useful dimensions
dim_motor, dim_sensor, dim_encoding = data["motor"].shape[1], data["gt_sensation"].shape[1], data["encoded_motor"].shape[1]
# open the figure
fig = plt.figure(file, figsize=(16, 4))
# create the axis for the motor space
ax1 = fig.add_subplot(141) if dim_motor in (1, 2) else fig.add_subplot(141, projection='3d')
# create the axis for the encoding space
ax2 = fig.add_subplot(142) if dim_encoding in (1, 2) else fig.add_subplot(142, projection='3d')
# create the axis for the egocentric position
ax3 = fig.add_subplot(143)
# create the axis for the sensory space
ax4 = fig.add_subplot(144) if dim_sensor in (1, 2) else fig.add_subplot(144, projection='3d')
# plot the motor configurations
ax1.cla()
ax1.set_title("motor space")
if dim_motor == 1:
ax1.plot(data["motor"][:, 0], 0 * data["motor"][:, 0], 'b.')
ax1.set_xlabel('$m_1$')
elif dim_motor == 2:
ax1.plot(data["motor"][:, 0], data["motor"][:, 1], 'b.')
ax1.set_xlabel('$m_1$')
ax1.set_ylabel('$m_2$')
elif dim_motor >= 3:
ax1.plot(data["motor"][:, 0], data["motor"][:, 1], data["motor"][:, 2], 'b.')
ax1.set_xlabel('$m_1$')
ax1.set_ylabel('$m_2$')
ax1.set_zlabel('$m_3$')
ax1.axis('equal')
# plot the encoded motor configurations
ax2.cla()
ax2.set_title("encoding space")
if dim_encoding == 1:
ax2.plot(data["encoded_motor"][:, 0], 0 * data["encoded_motor"][:, 0], 'r.')
ax2.set_xlabel('$h_1$')
ax2.text(0.05, 0.05, "D_topo = {:.2e}".format(data["topo_error_in_H"]), transform=ax2.transAxes,
fontsize=9, verticalalignment="top", bbox=dict(boxstyle="round", facecolor="wheat", alpha=0.2))
elif dim_encoding == 2:
ax2.plot(data["encoded_motor"][:, 0], data["encoded_motor"][:, 1], 'r.')
ax2.set_xlabel('$h_1$')
ax2.set_ylabel('$h_2$')
ax2.text(0.05, 0.05, "D_topo = {:.2e}".format(data["topo_error_in_H"]), transform=ax2.transAxes,
fontsize=9, verticalalignment="top", bbox=dict(boxstyle="round", facecolor="wheat", alpha=0.2))
elif dim_encoding >= 3:
ax2.plot(data["encoded_motor"][:, 0], data["encoded_motor"][:, 1], data["encoded_motor"][:, 2], 'r.')
ax2.set_xlabel('$h_1$')
ax2.set_ylabel('$h_2$')
ax2.set_zlabel('$h_3$')
ax2.text(0.05, 0.05, 0.05, "D_topo = {:.2e}".format(data["topo_error_in_H"]), transform=ax2.transAxes,
fontsize=9, verticalalignment="top", bbox=dict(boxstyle="round", facecolor="wheat", alpha=0.2))
ax2.axis('equal')
# plot the sensor positions and the linear projection of the encoded motor configurations in the same space
ax3.cla()
ax3.set_title("sensor position")
for k in range(data["gt_pos"].shape[0]):
ax3.plot((data["gt_pos"][k, 0], data["projected_encoding"][k, 0]),
(data["gt_pos"][k, 1], data["projected_encoding"][k, 1]), 'r-', lw=0.4)
ax3.plot(data["gt_pos"][:, 0], data["gt_pos"][:, 1], "o", color=[0, 0, 1], mfc="none", ms=8)
ax3.plot(data["projected_encoding"][:, 0], data["projected_encoding"][:, 1], 'r.')
ax3.set_xlabel('$x$')
ax3.set_ylabel('$y$')
ax3.text(0.05, 0.95, "D_metric = " + "{:.2e}".format(data["metric_error"]), transform=ax3.transAxes,
fontsize=9, verticalalignment="top", bbox=dict(boxstyle="round", facecolor="wheat", alpha=0.2))
ax3.axis('equal')
# plot the ground-truth and predicted sensory configurations
ax4.cla()
ax4.set_title("sensory space")
if dim_sensor == 1:
ax4.plot(data["gt_sensation"][:, 0], 0 * data["gt_sensation"][:, 0], "o", color=[0, 1, 0], ms=8, mfc="non")
ax4.plot(data["predicted_sensation"][:, 0], 0 * data["predicted_sensation"][:, 0], 'm.')
ax4.set_xlabel('$s_1$')
ax4.text(0.05, 0.05, "loss={:.2e}".format(data["loss"]), transform=ax4.transAxes,
fontsize=9, verticalalignment="top", bbox=dict(boxstyle="round", facecolor="wheat", alpha=0.2))
elif dim_sensor == 2:
ax4.plot(data["gt_sensation"][:, 0], data["gt_sensation"][:, 1], "o", color=[0, 1, 0], ms=8, mfc="none")
ax4.plot(data["predicted_sensation"][:, 0], data["predicted_sensation"][:, 1], 'm.')
ax4.set_xlabel('$s_1$')
ax4.set_ylabel('$s_2$')
ax4.text(0.05, 0.05, "loss={:.2e}".format(data["loss"]), transform=ax4.transAxes,
fontsize=9, verticalalignment="top", bbox=dict(boxstyle="round", facecolor="wheat", alpha=0.2))
elif dim_sensor >= 3:
ax4.plot(data["gt_sensation"][:, 0], data["gt_sensation"][:, 1], data["gt_sensation"][:, 2], "o", color=[0, 0.5, 0], ms=8, mfc="none")
ax4.plot(data["predicted_sensation"][:, 0], data["predicted_sensation"][:, 1], data["predicted_sensation"][:, 2], 'm.')
ax4.set_xlabel('$s_1$')
ax4.set_ylabel('$s_2$')
ax4.set_zlabel('$s_3$')
ax4.text(0.05, 0.05, 0.05, "loss={:.2e}".format(data["loss"]), transform=ax4.transAxes,
fontsize=9, verticalalignment="top", bbox=dict(boxstyle="round", facecolor="wheat", alpha=0.2))
ax4.axis('equal')
# display figure
plt.show()
return fig
def test_encoding_module():
# TODO
pass
def test_sensory_prediction():
# TODO
pass
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-d", "--dir", dest="dir_experiment", help="path the the folder of the experiment", required=True)
parser.add_argument("-i", "--index_run", dest="index_run", help="index of the run for which to display the projection", type=int, default=0)
args = parser.parse_args()
dir_experiment = args.dir_experiment
index_run = args.index_run
plt.ion()
fh = read_and_display_results(dir_experiment, log_scale=False)
fh.savefig(dir_experiment + "/curves.png")
fh.savefig(dir_experiment + "/curves.svg")
for exploration_type in ["MEM", "MM", "MME"]:
fh = display_all_projections_of_a_single_run(dir_experiment, exploration_type, index_run)
fh.savefig(dir_experiment + "/projection_" + exploration_type + "_run" + str(index_run) + ".png")
fh.savefig(dir_experiment + "/projection_" + exploration_type + "_run" + str(index_run) + ".svg")
input("Press any key to exit the program.")