-
Notifications
You must be signed in to change notification settings - Fork 59
/
test_frcnn.py
230 lines (186 loc) · 8.84 KB
/
test_frcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import cv2
import numpy as np
import sys
import pickle
from optparse import OptionParser
import time
from faster_rcnn import config, data_generators
import faster_rcnn.resnet as nn
from keras import backend as K
from keras.layers import Input
from keras.models import Model
from faster_rcnn import roi_helpers
overlap_thresh = 0.2
bbox_threshold = 0.5
def format_img(img, C):
"""
Normalize and resize image to have the smallest side equal to 600
"""
img_min_side = float(C.im_size)
(height,width,_) = img.shape
(resized_width, resized_height, ratio) = data_generators.get_new_img_size(width, height, C.im_size)
img = cv2.resize(img, (resized_width, resized_height), interpolation=cv2.INTER_CUBIC)
img = data_generators.normalize_img(img, C)
return img, ratio
def get_real_coordinates(ratio, x1, y1, x2, y2):
"""
Method to transform the coordinates of the bounding box to its original size
"""
real_x1 = int(round(x1 // ratio))
real_y1 = int(round(y1 // ratio))
real_x2 = int(round(x2 // ratio))
real_y2 = int(round(y2 // ratio))
return (real_x1, real_y1, real_x2, real_y2)
def get_models(C):
"""
Create models : rpn, classifier and classifier only
:param C: config object
:return: models
"""
img_input = Input(shape=(None, None, 3))
roi_input = Input(shape=(C.num_rois, 4))
feature_map_input = Input(shape=(None, None, 1024))
# define the base network (resnet here)
shared_layers = nn.nn_base(img_input, trainable=True)
# define the RPN, built on the base layers
num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)
rpn_layers = nn.rpn(shared_layers, num_anchors)
# define the classifer, built on the feature map
classifier = nn.classifier(feature_map_input, roi_input, C.num_rois, nb_classes=len(C.class_mapping), trainable=True)
model_rpn = Model(img_input, rpn_layers)
model_classifier_only = Model([feature_map_input, roi_input], classifier)
model_classifier = Model([feature_map_input, roi_input], classifier)
model_rpn.load_weights(C.model_path, by_name=True)
model_classifier.load_weights(C.model_path, by_name=True)
model_rpn.compile(optimizer='sgd', loss='mse')
model_classifier.compile(optimizer='sgd', loss='mse')
return model_rpn, model_classifier, model_classifier_only
def detect_predict(pic, C, model_rpn, model_classifier, model_classifier_only, class_mapping, class_to_color, print_dets=False, export=False):
"""
Detect and predict object in the picture
:param pic: picture numpy array
:param C: config object
:params model_*: models from get_models function
:params class_*: mapping and colors, need to be loaded to keep the same colors/classes
:return: picture with bounding boxes
"""
img = pic
X, ratio = format_img(img, C)
img_scaled = np.transpose(X.copy()[0, (2, 1, 0), :, :], (1, 2, 0)).copy()
img_scaled[:, :, 0] += 123.68
img_scaled[:, :, 1] += 116.779
img_scaled[:, :, 2] += 103.939
img_scaled = img_scaled.astype(np.uint8)
if K.image_dim_ordering() == 'tf':
X = np.transpose(X, (0, 2, 3, 1))
# get the feature maps and output from the RPN
[Y1, Y2, F] = model_rpn.predict(X)
R = roi_helpers.rpn_to_roi(Y1, Y2, C, K.image_dim_ordering(), overlap_thresh=0.7)
# convert from (x1,y1,x2,y2) to (x,y,w,h)
R[:, 2] -= R[:, 0]
R[:, 3] -= R[:, 1]
# apply the spatial pyramid pooling to the proposed regions
bboxes = {}
probs = {}
# print(class_mapping)
for jk in range(R.shape[0]//C.num_rois + 1):
ROIs = np.expand_dims(R[C.num_rois*jk:C.num_rois*(jk+1), :], axis=0)
if ROIs.shape[1] == 0:
break
if jk == R.shape[0]//C.num_rois:
#pad R
curr_shape = ROIs.shape
target_shape = (curr_shape[0],C.num_rois,curr_shape[2])
ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype)
ROIs_padded[:, :curr_shape[1], :] = ROIs
ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :]
ROIs = ROIs_padded
[P_cls, P_regr] = model_classifier_only.predict([F, ROIs])
for ii in range(P_cls.shape[1]):
if np.max(P_cls[0, ii, :]) < bbox_threshold or np.argmax(P_cls[0, ii, :]) == (P_cls.shape[2] - 1):
continue
cls_name = class_mapping[np.argmax(P_cls[0, ii, :])]
if cls_name not in bboxes:
bboxes[cls_name] = []
probs[cls_name] = []
(x, y, w, h) = ROIs[0, ii, :]
cls_num = np.argmax(P_cls[0, ii, :])
try:
(tx, ty, tw, th) = P_regr[0, ii, 4*cls_num:4*(cls_num+1)]
tx /= C.classifier_regr_std[0]
ty /= C.classifier_regr_std[1]
tw /= C.classifier_regr_std[2]
th /= C.classifier_regr_std[3]
x, y, w, h = roi_helpers.apply_regr(x, y, w, h, tx, ty, tw, th)
except:
pass
bboxes[cls_name].append([C.rpn_stride*x, C.rpn_stride*y, C.rpn_stride*(x+w), C.rpn_stride*(y+h)])
probs[cls_name].append(np.max(P_cls[0, ii, :]))
all_dets = []
boxes_export = {}
for key in bboxes:
bbox = np.array(bboxes[key])
# Eliminating redundant object detection windows
new_boxes, new_probs = roi_helpers.non_max_suppression_fast(bbox, np.array(probs[key]), overlap_thresh=overlap_thresh)
# Keep only the best prediction per character
jk = np.argmax(new_probs)
# Threshold for best prediction
if new_probs[jk] > 0.55:
(x1, y1, x2, y2) = new_boxes[jk,:]
# Convert predicted picture box coordinates to real-size picture coordinates
(real_x1, real_y1, real_x2, real_y2) = get_real_coordinates(ratio, x1, y1, x2, y2)
# Exporting box coordinates instead of draw on the picture
if export:
boxes_export[key] = [(real_x1, real_y1, real_x2, real_y2), int(100*new_probs[jk])]
else:
cv2.rectangle(img,(real_x1, real_y1), (real_x2, real_y2), (int(class_to_color[key][0]), int(class_to_color[key][1]), int(class_to_color[key][2])),2)
textLabel = '{}: {}%'.format(key,int(100*new_probs[jk]))
all_dets.append((key,100*new_probs[jk]))
(retval,baseLine) = cv2.getTextSize(textLabel,cv2.FONT_HERSHEY_COMPLEX,1,1)
# To avoid putting text outside the frame
# replace the legende if the box is outside the image
if real_y1 < 20 and real_y2 < img.shape[0]:
textOrg = (real_x1, real_y2+5)
elif real_y1 < 20 and real_y2 > img.shape[0]:
textOrg = (real_x1, img.shape[0]-10)
else:
textOrg = (real_x1, real_y1+5)
cv2.rectangle(img, (textOrg[0] - 5, textOrg[1]+baseLine - 5), (textOrg[0]+retval[0] + 5, textOrg[1]-retval[1] - 5), (0, 0, 0), 2)
cv2.rectangle(img, (textOrg[0] - 5,textOrg[1]+baseLine - 5), (textOrg[0]+retval[0] + 5, textOrg[1]-retval[1] - 5), (255, 255, 255), -1)
cv2.putText(img, textLabel, textOrg, cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 0), 1)
if print_dets:
print(all_dets)
if export:
return boxes_export
else:
return img
if __name__ == "__main__":
parser = OptionParser()
parser.add_option("-p", "--path", dest="test_path", help="Path to test data.")
(options, args) = parser.parse_args()
if not options.test_path: # if filename is not given
parser.error('Error: path to test data must be specified. Pass --path to command line')
## Load config object
with open('./config.pickle', 'rb') as f_in:
C = pickle.load(f_in)
# turn off any data augmentation at test time
C.use_horizontal_flips = False
C.use_vertical_flips = False
C.rot_90 = False
model_rpn, model_classifier, model_classifier_only = get_models(C)
class_mapping = C.class_mapping
if 'bg' not in class_mapping:
class_mapping['bg'] = len(class_mapping)
class_mapping = {v: k for k, v in class_mapping.items()}
class_to_color = {class_mapping[v]: np.random.randint(0, 255, 3) for v in class_mapping}
for idx, img_name in enumerate(sorted(os.listdir(options.test_path))):
if not img_name.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')):
continue
print(img_name)
filepath = os.path.join(options.test_path,img_name)
img = cv2.imread(filepath)
st = time.time()
img = detect_predict(img, C, model_rpn, model_classifier, model_classifier_only, class_mapping, class_to_color, True)
print('Elapsed time = {}'.format(time.time() - st))
cv2.imwrite('./results_test/result_{}.png'.format(img_name.replace('.png', '')),img)