The official pytorch implementation of the paper NAFSSR: Stereo Image Super-Resolution Using NAFNet. You can get more infomation about NAFSSR with folloing links: [video]/[slides]/[poster].
This paper proposes a simple baseline named NAFSSR for stereo image super-resolution. We use a stack of NAFNet's Block (NAFBlock) for intra-view feature extraction and combine it with Stereo Cross Attention Modules (SCAM) for cross-view feature interaction.
NAFSSR outperforms the state-of-the-art methods on the KITTI 2012, KITTI 2015, Middlebury, and Flickr1024 datasets. With NAFSSR, we won 1st place in the NTIRE 2022 Stereo Image Super-resolution Challenge.
Follow previous works, our models are trained with Flickr1024 and Middlebury datasets, which is exactly the same as iPASSR. Please visit their homepage and follow their instructions to download and prepare the datasets.
The structure of datasets
directory should be like
datasets
├── StereoSR
│ ├── patches_x2
│ │ ├── 000001
│ │ ├── 000002
│ │ ├── ...
│ │ ├── 298142
│ │ └── 298143
│ ├── patches_x4
│ │ ├── 000001
│ │ ├── 000002
│ │ ├── ...
│ │ ├── 049019
│ │ └── 049020
| ├── test
│ | ├── Flickr1024
│ │ │ ├── hr
│ │ │ ├── lr_x2
│ │ │ └── lr_x4
│ | ├── KITTI2012
│ │ │ ├── hr
│ │ │ ├── lr_x2
│ │ │ └── lr_x4
│ | ├── KITTI2015
│ │ │ ├── hr
│ │ │ ├── lr_x2
│ │ │ └── lr_x4
│ │ └── Middlebury
│ │ ├── hr
│ │ ├── lr_x2
│ │ └── lr_x4
name | scale | #Params | PSNR | SSIM | pretrained models | configs |
---|---|---|---|---|---|---|
NAFSSR-T | x4 | 0.46M | 23.69 | 0.7384 | gdrive | baidu | train | test |
NAFSSR-S | x4 | 1.56M | 23.88 | 0.7468 | gdrive | baidu | train | test |
NAFSSR-B | x4 | 6.80M | 24.07 | 0.7551 | gdrive | baidu | train | test |
NAFSSR-L | x4 | 23.83M | 24.17 | 0.7589 | gdrive | baidu | train | test |
NAFSSR-T | x2 | 0.46M | 28.94 | 0.9128 | gdrive | baidu | train | test |
NAFSSR-S | x2 | 1.56M | 29.19 | 0.9160 | gdrive | baidu | train | test |
NAFSSR-B | x2 | 6.80M | 29.54 | 0.7551 | gdrive | baidu | train | test |
NAFSSR-L | x2 | 23.79M | 29.68 | 0.9221 | gdrive | baidu | train | test |
PSNR/SSIM are evaluate on Flickr1024 test set.
- NAFSSR-T for 4x SR:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/NAFSSR/NAFSSR-T_x4.yml --launcher pytorch
- NAFSSR-S for 4x SR:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/NAFSSR/NAFSSR-S_x4.yml --launcher pytorch
- NAFSSR-B for 4x SR:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/NAFSSR/NAFSSR-B_x4.yml --launcher pytorch
- NAFSSR-L for 4x SR:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/NAFSSR/NAFSSR-L_x4.yml --launcher pytorch
- NAFSSR-L for 2x SR:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/NAFSSR/NAFSSR-L_x2.yml --launcher pytorch
- Test by a single gpu by default. Set
--nproc_per_node
to # of gpus for distributed validation.
-
NAFNet-B for 4x SR:
python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/NAFSSR/NAFSSR-B_x4.yml --launcher pytorch
-
NAFNet-S for 4x SR:
python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/NAFSSR/NAFSSR-S_x4.yml --launcher pytorch
-
8 gpus by default. Set
--nproc_per_node
to # of gpus for distributed validation.
If NAFSSR helps your research or work, please consider citing NAFSSR.
@InProceedings{chu2022nafssr,
author = {Chu, Xiaojie and Chen, Liangyu and Yu, Wenqing},
title = {NAFSSR: Stereo Image Super-Resolution Using NAFNet},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2022},
pages = {1239-1248}
}