-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistance.ml
33 lines (31 loc) · 1.18 KB
/
distance.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
(defn kendalls-tau
"
http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient
http://www.statsdirect.com/help/nonparametric_methods/kend.htm
http://mail.scipy.org/pipermail/scipy-dev/2009-March/011589.html
best explanation and example is in \"cluster analysis for researchers\" page 165.
http://www.amazon.com/Cluster-Analysis-Researchers-Charles-Romesburg/dp/1411606175
"
[a b]
(let [_ (assert (= (count a) (count b)))
n (count a)
ranked (reverse (sort-map (zipmap a b)))
;;dcd is the meat of the calculation, the difference between the doncordant and discordant pairs
dcd (second
(reduce
(fn [[vals total] [k v]]
(let [diff (- (count (filter #(> % v) vals))
(count (filter #(< % v) vals)))]
[(conj vals v) (+ total diff)]))
[[] 0]
ranked))]
(/ (* 2 dcd)
(* n (- n 1)))))
;; *) *)
(* ab is an array of pairs, sorted descending by b *)
let kendall_tau ab =
let dcd = A.fold_left begin fun (bs,total) (a,b) ->
let num_gt = L.filter ((>) a) as |> L.length in
let num_lt = L.filter ((<) a) as |> L.length in
let diff = num_gt - num_lt in
(a::as)